Выбрать главу

Место атомов углерода в графите можно уподобить нижнему, место в алмазе — верхнему положению рояля.

Чтобы они — атомы углерода — оказались наверху (алмаз), нужно затратить энергию. В любом из возможных положений по дороге к верхнему они сами по себе стремятся занять нижнее положение (быть графитом).

Для того чтобы вычислить, как заставить углеродные атомы подняться на этот энергетический верх, нужны были численные значения физических свойств углерода при разных давлениях и температурах. В том числе при тех, которые еще не были достигнуты. Лейпунский отыскал удобный (изящный, как утверждают математики) способ перебросить мостик расчета от известных значений к неизвестным, но совершенно необходимым для решения задачи. Это было первым успехом.

Вторым успехом было нахождение той температуры, при которой атомы углерода должны перестроиться из графитного строя в алмазный. Ее удалось вычислить, можно сказать, вообще без математики. Лейпунский задался вопросом, который теперь (после него, как всегда!) покажется само собой разумеющимся: не будет ли графит превращаться в алмаз при той самой температуре, при которой алмаз полнее всего превращается в графит? Разве вода замерзает не при тех же условиях, при которых лед тает? Расчет подтвердил и это простейшее предположение; еще один пример простоты сложных вещей.

И вот на письменном столе Лейпунского появился график — диаграмма состояния углерода при различных давлениях и температурах. Кривые показывали: для превращения графита в алмаз нужно, кроме двухтысячеградусного жара, давление не меньше 60 — 70 тыс. атм. Лучше всего что-нибудь около 100 тыс… В сотни раз больше, чем могло быть у тех, кто пытался изготовить алмаз. И Лейпунскому пришлось заканчивать свои расчеты довольно грустными словами в их адрес:

«…Выяснилось прискорбное обстоятельство: все попытки изготовления алмаза были сделаны в условиях, при которых графит является более устойчивой твердой фазой, чем алмаз».

Более того: «Большинство описанных опытов было произведено в то время, когда еще даже не было ясно, что устойчивее в земных условиях — графит или алмаз».

Ни у Каразина, ни у Муассана, ни у Хрущова, ни у многочисленных их последователей и авторов патентованных технологий не могло быть ничего похожего на 100 тыс. атм. А у Крукса, который устраивал взрывы в стальной бомбе, высокое давление было слишком непродолжительным, а значит, слишком мала (хоть и не равна нулю — заметим это!) была вероятность попасть в цель, которая раскрывается только на доли секунды…

Ну, а что же все-таки было у всех тех, кто объявлял, что алмаз сделан?

Кое у кого была, наверное, заурядная фикция. Например, у господина Карабачека и его шефов из «ИГ Фарбен». А честные ученые в конце XIX и начале XX в. — у них просто не было еще средств для точного определения вещества в тех микроскопических дозах, в которых они добывали свои кристаллы.

Чаще всего это были, очевидно, комбинации окислов и карбидов — титана, алюминия, кремния. И титан, и алюминий, и кремний обязательно присутствовали в исходных материалах или в самой аппаратуре исследователей. Комбинация окислов и карбидов могла получаться такой, что у нее оказывались «подходящими к алмазу» и удельный вес, и твердость (примерно как у корунда). И при сжигании карбидов получался углерод. Почти чистый…

Вот как было сказано об этом в 1939 г. у Лейпунского:

«…Чтобы быть уверенным в получении алмаза, кристаллизацию необходимо производить:

   1)  при таких давлениях, когда алмаз является более устойчивой фазой, чем графит;

   2)  при достаточно малых скоростях, чтобы не проявились преимущества графита как кинетически более вероятной фазы;

   3)  при таких температурах, когда возможны перестройки в кристаллической решетке, чтобы в случае образования графита последний мог перейти в алмаз.

Перестройки в решетке алмаза начинаются с 1700 — 1800°, и при этой температуре нет оснований ожидать, что решетка графита будет устойчивее. Поэтому температура в 2000° К является минимальной для получения алмаза из графита в твердой фазе, причем опыт должен производиться при таком давлении, когда алмаз при этой температуре устойчивее графита, т. е. при давлении порядка 60 000 ат.

Техника высоких давлений в настоящее время позволяет поддерживать в течение длительного времени давление 50 000 ат… Дальнейшее увеличение этого предела до 60 000 — 70 000 ат, по-видимому, осуществимо, хотя оно потребует очень большого труда при подборе соответствующих твердых сплавов. Нагрев графитовой массы до 2000° при большом давлении представляет меньшие трудности и может быть осуществлен изнутри. Но все же опыт при 60 000 — 70 000 ат является опытом будущего, хотя, может быть, и весьма недалекого.