Выбрать главу

Синапс состоит из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели. Особенностью постсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору, и наличие хемозависимых ионных каналов. Возбуждение передается с помощью медиаторов (посредников). Медиаторы – это химические вещества, которые в зависимости от их природы делятся на следующие группы: моноамины (ацетилхолин, дофамин, норадреналин, серотонин), аминокислоты (гамма-аминомасляная кислота – ГАМК, глутаминовая кислота, глицин и др.) и нейропептиды (вещество Р, эндорфины, нейротензин, ангиотензин, вазопрессин, соматостатин и др.). Медиатор находится в пузырьках пресинаптического утолщения, куда он может поступать либо из центральной области нейрона с по-мощью аксонального транспорта, либо за счет обратного захвата медиатора из синаптической щели. Он может также синтезироваться в синаптических терминалях из продуктов его расщепления.

Когда к окончанию аксона приходит ПД и пресинаптическая мембрана деполяризуется, ионы кальция начинают поступать из внеклеточной жидкости внутрь нервного окончания (рис. 8). Кальций активирует перемещение синаптических пузырьков к пресинаптической мембране, где они разрушаются с выходом медиатора в синаптическую щель. В возбуждающих синапсах медиатор диффундирует в щели и связывается с рецепторами постсинаптической мембраны, что приводит к открытию каналов для ионов натрия, а следовательно, к ее деполяризации – возникновению возбуждающего постсинаптического потенциала (ВПСП). Между деполяризованной мембраной и соседними с ней участками возникают местные токи. Если они деполяризуют мембрану до критического уровня, то в ней возникает потенциал действия. В тормозных синапсах медиатор (например, глицин) аналогичным образом взаимодействует с рецепторами постсинаптической мембраны, но открывает в ней калиевые и/или хлорные каналы, что вызывает переход ионов по концентрационному градиенту: калия из клетки, а хлора – внутрь клетки. Это приводит к гиперполяризации постсинаптической мембраны – возникновению тормозного постсинаптического потенциала (ТПСП).

Один и тот же медиатор может связываться не с одним, а с несколькими различными рецепторами. Так, ацетилхолин в нервно-мышечных синапсах скелетных мышц взаимодействует с Н-холинорецепторами, которые открывают каналы для натрия, что вызывает ВПСП, а в вагосердечных синапсах он действует на М-холинорецепторы, открывающие каналы для ионов калия (ге-нерируется ТПСП). Следовательно, возбуждающий или тормозной характер действия медиатора определяется свойствами постсинаптической мембраны (видом рецептора), а не самого медиатора.

Кроме нейромедиаторов, пресинаптические окончания выделяют вещества, которые не участвуют непосредственно в передаче сигнала и играют роль нейромодуляторов эффектов сигнала. Модуляция осуществляется влиянием либо на выделение медиатора, либо на его связывание рецепторами постсинаптического нейрона, а также на реакцию этого нейрона на медиаторы. Функцию классических медиаторов выполняют амины и аминокислоты, функцию нейромодуляторов – нейропептиды. Медиаторы синтезируются в основном в терминалях аксона, нейропептиды образуются в теле нейрона путем синтеза белков, от которых они отщепляются под влиянием протеаз.

Синапсы с химической передачей возбуждения обладают рядом общих свойств: возбуждение через синапсы проводится только в одном направлении, что обусловлено строением синапса (медиатор выделяется только из пресинаптической мембраны и взаимодействует с рецепторами постсинаптической мембраны); передача возбуждения через синапсы осуществляется медленнее, чем по нервному волокну (синаптическая задержка); синапсы обладают низкой лабильностью и высокой утомляемостью, а также высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам; в синапсах происходит трансформация ритма возбуждения.

Фармакологические влияния на возбудимые ткани

Существует большое число препаратов, способных влиять на передачу возбуждения и торможения в химических синапсах. В зависимости от вида синапсов и характера действия их делят на несколько групп. Холинотропные средства влияют на передачу нервного импульса в холинергических синапсах. Эти вещества по строению близки к молекуле ацетилхолина и могут взаимодействовать либо с холинорецепторами, либо с инактивирующими ферментами (ацетилхолинэстераза, бутирилхолинэстераза). Холинотропные средства делят на стимулирующие холинорецепторы – холиномиметики и блокирующие эти рецепторы – холинолитики. Холиномиметики – вещества, имитирующие эффекты ацетилхолина. К М-холиномиметикам относятся пилокарпин, ацеклидин, карбахолин. Н-холиномиметическими средствами являются лобелин, цитизин, анабазин, карбахолин. Непрямые холиномиметические средства (физостигмина салицилат, галантамина гидробромид, прозерин, оксазил) сами не влияют на холинорецепторы, а усиливают действие медиатора, предупреждая его разрушение (угнетая обе холинэстеразы).

Холиноблокирующие (холинолитические) средства делятся на М- и Н-холинолитики. К М-холинолитическим препаратам относятся атропин, скополамин, платифиллин, метацин. Н-холинолитики можно разделить на ганглиоблокаторы и миорелаксанты. Ганглиоблокаторы (пахикарпин, пирилен, бензогексоний, пентамин и др.) нарушают проведение импульсов через вегетативные ганглии. Миорелаксанты вызывают расслабление скелетных мышц. Различают антидеполяризующие (d-тубокурарин, ардуан) и деполяризующие (дитилин и др.) миорелаксанты. Деполяризующие миорелаксанты сначала кратковременно активируют Н-холинорецепторы, в результате возникает деполяризация (длящаяся несколько секунд) мембраны рецептора, сопровождающаяся фибрилляцией скелетных мышц. Деполяризация сменяется потерей чувствительности к ацетилхолину – десентизацией, которая длится несколько минут. Она возникает как следствие изменения конформации рецептора и тормозящего влияния ионов кальция (в избытке попавших внутрь мышечного волокна в момент длительной деполяризации) на Na++-АТФазу, что задерживает реполяризацию постсинаптической мембраны и восстановление ее реакции на поступающую импульсацию.

Препараты, взаимодействующие с адренорецепторами, делят на подгруппы в зависимости от типа рецепторов, на которые они влияют: α1, α2, β1, β2. К α1-адреномиметикам относится норадреналин, α2-адреномиметиком является клофелин. Добутамин относится к β1-адреномиметикам, он преимущественно влияет на миокард, увеличивая силу, но не частоту сокращений. Средствами с преимущественным воздействием на β2-адренорецепторы являются орципреналин, салбутамол, фенотерол, их применяют для купирования бронхоспазма. β2-Адреномиметики способны ослабить сокращения беременной матки, их используют для сохранения беременности.

Дофамин – медиатор нервного импульса и предшественник норадреналина и адреналина. В физиологических концентрациях он влияет на дофаминорецепторы (D-рецепторы), при увеличении концентрации в крови способен стимулировать β-адренорецепторы, а в еще больших дозах – α-адренорецепторы. Стимуляция D1-рецепторов вызывает расслабление гладкой мускулатуры сосудов, сфинктеров пищевода, желудка, кишечника; увеличение силы сердечных сокращений. Стимуляция D2-рецепторов сопровождается ограничением освобождения катехоламинов из окончаний симпатических волокон, ацетилхолина – из преганглиопарных волокон симпатических нервов, уменьшением секреции пролактина гипофизом, слюны подчелюстной железой.

Леводопа – предшественник дофамина, норадреналина и ад-реналина, не инактивируется МАО (моноаминоксидаза) и КОМТ (катехол-о-метилтрансфераза), проникает во все ткани, включая ЦНС. Нормализуя содержание дофамина в подкорковых структурах, леводопа восстанавливает нормальные сокращения скелетных мышцу больных, страдающих дистонией и паркинсонизмом.