Выбрать главу

В заключение я скажу, что все мы обладаем интуицией непрерывности любого числа измерений, ибо мы имеем способность построить физическую и математическую непрерывности, что эта способность существует в нас до всякого опыта, потому что без нее опыт в собственном смысле слова был бы невозможен и сводился бы к непосредственным ощущениям, не поддающимся никакой организации, что эта интуиция есть лишь сознание того, что мы обладаем такой способностью. Однако способность эта могла бы развиваться в различных направлениях; она могла бы позволить нам построить пространство четырех измерений точно таким же образом, как и пространство трех измерений. Только внешний мир, только опыт побуждают нас развивать эту способность именно в одном, а не в другом направлении.

Глава IV

Логика бесконечности

1. Чем должна быть классификация

Могут ли обычные правила логики применяться без изменения в тех случаях, когда рассматриваются совокупности, содержащие бесконечное число предметов? Раньше этот вопрос не возникал, но им пришлось заняться, когда математики, сделавшие своей специальностью изучение бесконечности, неожиданно натолкнулись на некоторые противоречия, быть может, и кажущиеся. Происходят ли эти противоречия от того, что были неверно применены правила логики, или же от того, что эти правила перестают быть правомерными вне их собственной области, т. е. области совокупностей, составленных только из конечного числа объектов? Мне кажется, что будет не лишним сказать здесь по этому поводу несколько слов и дать читателю понятие о тех спорах, к которым привел этот вопрос.

Формальная логика есть не что иное, как учение о свойствах, общих для всякой классификации. Она учит нас, что два солдата, числящихся в одном полку, тем самым принадлежат к одной и той же бригаде, а следовательно, и к одной и той же дивизии; к этому-то и сводится вся теория силлогизмов. Каково же условие, при котором правила этой логики имеют силу? Для этого необходимо, чтобы принятая классификация была неизменной. Мы знаем, что два солдата служат в одном полку, и отсюда заключаем, что они принадлежат к одной и той же бригаде. Мы имеем на это право, так как полагаем, что за то время, пока мы рассуждаем, ни один солдат не был переведен из одного полка в другой.

Отмеченные выше недоразумения произошли из-за того, что забыли это простое условие и опирались на классификацию, которая не могла быть таковой. Ее постарались объявить неизменной, но этого недостаточно; необходимо было сделать ее действительно неизменной, а существуют случаи, когда это невозможно.

Позвольте мне заимствовать пример у Рассела. Кстати, он использовал его против меня. Он хотел показать, что трудности возникают не от введения актуальной бесконечности, так как они могут появиться даже при рассмотрении только конечных чисел. Я впоследствии вернусь к этому пункту, в данный момент речь идет не об этом, и я выбрал этот пример, поскольку он интересен и хорошо поясняет отмеченный мною факт.

Каково наименьшее целое число, которое не может быть определено фразой, состоящей менее чем из ста французских слов? И существует ли такое число?

Да, так как с помощью ста французских слов можно построить только конечное число фраз, а число слов в словаре французского языка конечно. Среди этих фраз будут и такие, которые не имеют никакого смысла и не определяют никакого целого числа. Но каждая из них может определить не больше одного целого числа. Количество целых чисел, которые могут быть таким образом определены, очевидно, конечно; следовательно, наверняка найдутся целые числа, которые не могут быть определены, и среди этих чисел найдется одно, которое будет меньше всех остальных.

Нет, так как если бы это целое число существовало, то его существование являлось бы противоречием, поскольку оно определялось бы фразой, состоящей менее чем из ста французских слов, т. е. той самой фразой, которая утверждает, что этого не может быть[87].

Это рассуждение основано на классификации целых чисел на две категории: таких, которые могут быть определены фразой, состоящей менее чем из ста французских слов, и таких, которые не могут быть ею определены. Ставя вопрос, мы неявно объявляем эту классификацию неизменной, и должны рассуждать уже после того, как окончательно это установили. Но это невозможно. Классификация не может быть окончательной ранее того, как мы пересмотрим все фразы менее чем из ста слов, отбросим те из них, которые лишены смысла, и установим смысл тех, которые его имеют. Но среди этих фраз есть и такие, которые не могут иметь смысла до того, как классификация будет установлена; такими являются те фразы, в которых речь идет о самой классификации. Итак, классификация чисел может быть установлена только после окончания разбора фраз, а этот разбор может быть закончен только после установления классификации. Таким образом, ни классификация, ни выбор фраз не могут быть никогда прекращены. Эти затруднения начинают встречаться особенно часто, как только дело касается бесконечных совокупностей. Положим, хотят классифицировать элементы подобной совокупности, и положим, что принцип этой классификации основывается на некоторой зависимости между классифицируемыми элементами и всем их собранием в целом. Может ли подобная классификация считаться когда-либо оконченной? Актуальной бесконечности нет, и когда мы говорим о бесконечной совокупности, этим мы хотим сказать, что она обладает тем свойством, что к ней без конца можно прибавлять новые элементы (подобно подписному листу, который никогда не будет закрыт в ожидании новых подписчиков). Но классифицирование никогда не может быть прекращено окончательно до тех пор, пока этот лист не будет закрыт. Всякий раз, как к этой совокупности прибавляют новые элементы, совокупность меняется; может измениться зависимость между этой совокупностью и уже классифицированными элементами, а так как по этой зависимости элементы распределялись в тот или иной ящик, то может случиться, что при изменении этой зависимости элементы уже не окажутся правильно распределенными, и их придется переместить из одних ящиков в другие. Пока могут быть еще введены новые элементы, следует опасаться того, что всю работу придется выполнять заново, а мы никогда не придем к такому моменту, когда больше не будет новых элементов, которые нужно вводить в совокупность; следовательно, классификация никогда не будет окончена.

вернуться

87

Имеется в виду фраза, с помощью которой сформулирован сам вопрос. — Примеч. ред.