Выбрать главу

Прежде чем разбирать эти аксиомы, я должен ответить на один вопрос: почему в их формулировке я сохранил немецкое слово Menge вместо того» чтобы перевести его по-французски словом ensemble (множество)? Потому что я не уверен в том, что слово Menge сохраняет свой интуитивный смысл, без которого было бы затруднительно отбросить определение Кантора; французское же слово ensemble внушает этот интуитивный смысл чересчур навязчиво, чтобы его можно было употреблять без помехи и в том случае, когда смысл изменялся.

На седьмой аксиоме я остановлюсь лишь немного; при этом я должен сказать несколько слов, чтобы отметить весьма оригинальный способ, которым Цермело ее высказывает. Он в действительности не удовлетворился данной мною формулировкой и говорит: существует Menge M, которое не может содержать элемента a, не включая в себя в то же время в качестве элемента Menge(a), т. е. такое, единственным элементом которого является a. И тогда, если M содержит элемент a, то оно будет содержать еще и ряд других элементов, а именно: Menge, единственным элементом которого является a, Menge, единственным элементом которого является Menge, единственным элементом которого является a, и т. д. Достаточно хорошо видно, что число этих элементов должно быть бесконечным. На первый взгляд, этот обходной путь кажется очень странным и очень искусственным; так оно в действительности и есть. Но Цермело хотел избежать слова «бесконечный», так как он рассматривает свои аксиомы как предшествующие отличению конечного от бесконечного.

Перейдем к шести первым аксиомам. Их можно рассматривать как очевидные, если только слову Menge будет дан его интуитивный смысл и если при этом будут рассматриваться предметы только в конечном числе. Но они являются таковыми не больше чем следующая аксиома, откровенно отброшенная автором:

8. Какие бы то ни было объекты образуют Menge.

В таком случае нам приходится задать вопрос: почему очевидность 8-й аксиомы исчезает, как только дело касается бесконечных совокупностей, в то время как очевидность шести первых имеет место?

Если для решения этого вопроса мы обратимся к формулировке аксиом, то прежде всего мы убедимся, что все эти аксиомы без исключения не дают нам ничего иного, кроме одного: определенные совокупности, образованные по определенным законам, составляют Mengen; таким образом, эти аксиомы окажутся для нас не чем иным, как правилами, предназначенными для расширения смысла слова Menge, чистыми определениями слова. И это одинаково верно как для 8-й аксиомы, которую мы отбрасываем, так и для первых семи аксиом, которые мы принимаем.

Мы одинаково быстро убеждаемся, что это первое впечатление ошибочно; подобные определения слова не поставят нас перед противоречием, его можно опасаться только в том случае, если мы имеем другие аксиомы, утверждающие, что некоторые совокупности не являются Mengen, а мы этих аксиом не имеем. В то же время, если мы отбрасываем 8-ю аксиому, то мы это делаем для того, чтобы избежать противоречия; Цермело говорит это открыто.

Поэтому отсюда необходимо заключить, что он не рассматривал свои аксиомы как простые определения слова, а связывал со словом Menge интуитивный смысл, существовавший до формулирования аксиом, хотя и немного отличный от обычного смысла. Его нельзя не заметить, исследуя, как автор пользуется им в своих рассуждениях. Menge — это нечто, о чем можно рассуждать, это нечто в определенной мере прочное и неизменное. Определить множество, Menge, некоторую совокупность — это всегда значит произвести классификацию, отделить предметы, принадлежащие этому множеству, от тех, которые не участвуют в нем. Тогда мы скажем, что это множество не есть Menge, если соответствующая классификация не предикативная, и что оно является Menge, если эта классификация предикативная или если относительно нее можно рассуждать так, как если бы она была таковой.

Если мы обрасываем 8-ю аксиому, то потому, что какие бы то ни было объекты, конечно, образуют совокупность, но совокупность, которая никогда не будет замкнутой и порядок которой может быть в любой момент нарушен введением непредвиденных членов; это такая совокупность, которая не предикативна. И, наоборот, когда мы, например, говорим, что каждому Menge T соответствует другое Menge UT или ST определенное неким способом, то мы утверждаем, что это определение предикативно, или что мы имеем право работать с ним, как если бы оно было таким.

Здесь уместно поговорить об одном различии, которое играет существенную роль в теории Цермело: «Eine Frage oder Aussage E, über deren Gültigkeit oder Ungultigkeit die Grundbeziehungen des Bereiches vermöge der Axiome und der allgemeingultigen logischen Gesetze ohne Willkür unterscheiden, heisst definit»[92]. Слово «definit» — здесь в большой степени синоним слова «предикативный». Так, предположим, например, что этот вопрос E будет заключаться в следующем: обладает ли такой-то элемент, принадлежащий Menge M, такими-то зависимостями по отношению ко всем другим элементам того же Menge, и можем ли мы согласиться говорить, что все элементы, относительно которых следует сказать да, образуют класс K? Для меня, и я думаю, что также и для Рассела, подобный вопрос не является определенным, так как другие элементы M бесконечны числом, так как можно будет без конца вводить новые из них и так как среди введенных новых могут быть такие, в определение которых входит понятие класса K, т. е. совокупности элементов, обладающих свойством E. Для Цермело этот вопрос был дефинитным, и я не знаю точно, где строгое разграничение между вопросами, которые дефинитны и которые таковыми не являются. Ему кажется, что для того, чтобы узнать, обладает ли некоторый элемент свойством E относительно всех других элементов M, достаточно проверить, обладает ли он им относительно каждого из них. Если вопрос оказывается дефинитным относительно каждого из этих элементов, то он будет таковым ipso facto (тем самым) и относительно всех этих элементов.

вернуться

92

Вопрос или положение E, справедливость или несправедливость которого может быть без всякого произвола установлена основными соотношениями данной области на основании аксиом или общих логических законов, называется дефинитным (нем.). — Примеч. ред.