Логицисты решили полностью изгнать из математики интуицию во всех ее видах. С их точки зрения многолетний заочный спор между Лейбницем и Кантом, то есть спор между логикой и интуицией в математике, благодаря трудам Пеано и Рассела раз и навсегда решен в пользу логики. В этом отношении примечательны взгляды Рассела, который считал, что интуитивные способности «лучше развиты в детях, чем у взрослых, у собак их, вероятно, больше, чем когда-либо было у людей. Но кто в этих фактах увидел бы рекомендацию для интуиции, должен был бы сделать из них вывод и снова бегать дикарем в лесах, ярко размалеваться и питаться акридами и диким медом».
Не приходится удивляться тому, что логицисты с негодованием отмели саму мысль иметь дело с подобным понятием в математике. Вся математика, утверждали они, может быть выведена из нескольких неопределяемых понятий и недоказуемых предложений, которые кладутся в основу логики.
В это время, когда казалось, что интуиция окончательно будет изгнана из математики, Пуанкаре единственный из европейских ученых выступает с целой серией статей, в которых подверг сокрушительной критике программу логицизма. Часть этих статей вошла затем в виде отдельных глав в его книги «Ценность науки», «Наука и метод», «Последние мысли». Свое выступление против логицистов Пуанкаре сравнивает с борьбой Геракла против лернейской гидры, у которой на месте одной отрубленной головы вырастали две. Но и находясь, практически, в одиночестве, он не только защитил интуицию от необоснованных нападок, но и предсказал крах логицизма в пору его наивысшего расцвета, когда, по словам Рассела, «великие триумфы пробуждали великие надежды».
Пуанкаре выдвигает следующие принципиальные возражения против логицизма: новые результаты в математике нельзя получить только при помощи логики — нужна еще и интуиция; доказательство уже полученных математических истин невозможно без обращения к интуиции; символика логицистов является путами для математического творчества. И как общий итог этих возражений — невозможность сведения математики к логике и необходимость наличия интуиции в математическом познании. Пуанкаре не ограничивается только критикой программы логицистов, он одновременно рассматривает многие стороны проблемы интуиции и противопоставляет идеям логицистов хорошо разработанное учение. Пуанкаре не отрицал той роли, которую играет в математическом творчестве логический вывод. Но, по его мнению, одной только логикой математика никак не исчерпывается. Необходим еще один род творчества, который столь безапелляционно отвергли логицисты: интуиция. Логика может только разворачивать, раскрывать то знание, которое изначально заложено в исходных посылках. «Доказательство, основывающееся по-настоящему на принципах аналитической логики, должно состоять из ряда предложений; одни из них, служащие посылками, будут представлять тождества или определения, другие будут выводиться из первых шаг за шагом, но, хотя связь между каждым предложением и следующим замечается непосредственно, нельзя будет сразу же увидеть, как совершился переход от первого предложения к последнему, и явится искушение рассматривать его, как новую истину. Но, если последовательно заменять различные, фигурирующие в нем выражения их определениями и если продолжить эту операцию до тех пор, пока это возможно, то под конец останутся только тождества, так что все сведется к одной колоссальной тавтологии. Следовательно, логика, если только она не оплодотворена интуицией, остается бесплодной»[113]. Только интуиция, постижение истины не путем доказательства, а непосредственным интеллектуальным усмотрением ее содержания, позволяет сделать скачок к принципиально новому знанию.
В споре с Пеано, Расселом и их единомышленниками Пуанкаре использует термин «интуиция» в самых различных смыслах. При этом необходимо подчеркнуть, что интуиция Пуанкаре не имеет ни малейшего оттенка чего-то иррационального или мистического. Он, специально отмечая это, очень много внимания уделяет конкретному анализу роли интуиции. Неоднократно говорит он, например, об интеллектуальной и чувственной интуиции. Первая, по его мнению, лежит в основе математического творчества. Интеллектуальная интуиция позволяет математикам «не только доказывать, но еще и изобретать. Через нее-то они подмечают сразу общий план логического здания» (с. 218). Это очень редкий и благодатный дар, считает Пуанкаре, лишь немногие владеют им. В то же время, он далек от того, чтобы преувеличивать достоинства интуитивного метода. «Интуиция не может дать нам ни строгости, ни даже достоверности — это замечается все больше и больше» (с. 208). Поэтому неизбежен, по его мнению, логический элемент в математике. «Логика и интуиция имеют каждая свою необходимую роль. Обе они неизбежны. Логика, которая одна может дать достоверность, есть орудие доказательства, интуиция есть орудие изобретательства» (с. 216).
113