С самого начала ясно, что систематические ошибки не могут удовлетворять закону Гаусса; но удовлетворяют ли ему случайные ошибки? Были многочисленные попытки доказать это; но почти все они являются грубо ошибочными умозаключениями. Тем не менее закон Гаусса можно доказать, опираясь на следующие гипотезы: общая ошибка есть результирующая очень большого числа частных и независимых ошибок; каждая из частных ошибок очень мала и, кроме того, подчиняется закону вероятности — какому угодно, при одном непременном условии: что вероятность положительной ошибки та же, что и вероятность ошибки, равной и противоположной по знаку. Очевидно, что эти условия будут выполняться часто, хотя и не всегда, и мы можем сохранить название случайных за теми ошибками, которые им удовлетворяют.
Отсюда видно, что метод наименьших квадратов является законным не во всех случаях; вообще физики доверяют ему меньше, чем астрономы. Несомненно это зависит от того, что астрономы, кроме систематических ошибок, с которыми они встречаются наравне с физиками, принуждены еще бороться с одной крайне важной и вполне случайной причиной ошибок: я имею в виду атмосферные колебания.
Очень любопытно послушать физика, беседующего с астрономом о методе наблюдения: физик, убежденный, что одно хорошее измерение стоит многих плохих, прежде всего со всей предосторожностью заботится о том, чтобы исключить все систематические ошибки до последней; астроном возражает ему: «но таким образом вы сможете наблюдать лишь небольшое число звезд; случайные ошибки не исчезнут».
Какой вывод следует из этого? Можно ли и впредь применять метод наименьших квадратов? Мы должны рассуждать так: мы исключили все систематические ошибки, какие только могли подозревать; мы хорошо знаем, что существуют еще и другие, но мы не можем их открыть; между тем надо сделать выбор и принять какую-то окончательную величину, которая должна быть рассматриваема как вероятная; очевидно, лучшее, что мы можем сделать для этого, — это применить метод Гаусса. Таким образом, мы применим только практическое правило, относящееся к субъективной вероятности. Больше сказать нечего.
Но некоторые хотят идти дальше и утверждают не только то, что вероятная величина равна тому-то, но еще то, что вероятная ошибка, вошедшая в результат, равна тому-то. Это совершенно незаконно. Это было бы верно лишь в том случае, если бы мы были уверены, что исключены все систематические ошибки; но мы об этом совершенно ничего не знаем. Пусть мы имеем два ряда наблюдений; прилагая правило наименьших квадратов, мы находим, что вероятная ошибка, относящаяся к первому ряду, вдвое меньше, чем во втором. Однако второй ряд может быть предпочтительнее, чем первый, так как первый может быть искажен большой систематической ошибкой. Все, что мы можем сказать, — это то, что первый ряд, вероятно, предпочтительнее второго, так как его случайная ошибка меньше и так как мы не имеем никакого основания утверждать, что систематическая ошибка для одного ряда больше, чем для другого: ведь мы об этом решительно ничего не знаем.
VII. Заключения. В настоящей главе я изложил немало проблем, не разрешив ни одной из них. Тем не менее я не сожалею о том, что написал о них, так как это, может быть, побудит читателя поразмыслить над этими тонкими вопросами.
Как бы то ни было, существует несколько пунктов, по-видимому, твердо установленных. Чтобы предпринять какое-либо вычисление вероятности — даже просто для того, чтобы это вычисление имело смысл, — надо взять в качестве исходной точки некоторую гипотезу или условное положение, которые всегда содержат известную долю произвола. При выборе этого условного положения мы не можем руководствоваться ничем, кроме принципа достаточного основания. К несчастью, этот принцип очень неопределенен и растяжим и, как мы видели в нашем беглом обзоре, принимает различные формы. Форма, под которой мы встречаем его чаще всего, — это вера в непрерывность: вера, которую трудно было бы оправдать убедительным рассуждением, но без которой никакая наука не была бы возможна. Наконец, исчисление вероятностей может быть с пользой применено в тех проблемах, в которых результат не зависит от принятой вначале гипотезы, лишь бы только эта гипотеза удовлетворяла условию непрерывности.
Глава XII
Оптика и электричество[18]
Теория Френеля. Самый лучший пример, какой только можно избрать для иллюстрации всего сказанного выше о методе физических наук и о значении гипотезы, представляет собой теория света и ее связь с теорией электричества. Благодаря Френелю оптика стала наиболее разработанной частью физики; так называемая волновая теория представляет собой нечто целое, действительно удовлетворяющее ум; не следует лишь требовать от нее того, чего она дать не может.
18
Эта глава представляет собою частичное воспроизведение предисловий к двум моим сочинениям: «Математическая теория света» (Париж, 1889) и «Электричество и оптика» (Париж, 1901).