Выбрать главу

Первое из них гласит, что полная энергия остается постоянной и что она состоит из двух частей:

1) кинетической энергии или живой силы; она зависит от масс гипотетических частиц m и от их скоростей, — я обозначу ее через Т — и

2) потенциальной энергии; она зависит исключительно от координат этих частиц — я обозначу ее через U. Сумма двух энергий Т и U остается постоянной.

Далее, чему же учит нас принцип наименьшего действия? Он учит нас тому, что для перехода из начального состояния, соответствующего моменту t0, в конечное состояние, соответствующее моменту t1, система должна двигаться таким путем, чтобы за промежуток времени между моментами t0 и t1 средняя величина «действия» (т. е. разности двух энергий Т и U) была минимальной. Впрочем, первый из двух принципов является следствием второго.

Если обе функции Т и U известны, этот принцип оказывается достаточным для определения уравнений движения. В самом деле, между всеми путями, позволяющими совершить переход от одного состояния к другому, есть, очевидно, один, для которого средняя величина действия меньше, чем для всех других. Далее, существует только один такой путь, и отсюда следует, что принцип наименьшего действия достаточен для определения действительного пути, а следовательно, для определения уравнений движения. Таким приемом мы приходим к так называемым уравнениям Лагранжа. В этих уравнениях роль независимых переменных играют координаты гипотетических частиц m; но я теперь предполагаю, что в качестве переменных приняты доступные прямому опыту параметры q.

Обе части энергии должны тогда выражаться в функции параметров q и их производных; ясно, что именно в таком виде они представляются экспериментатору: он, естественно, будет стремиться определить потенциальную и кинетическую энергию с помощью величин, которые он может непосредственно наблюдать[20].

Таким образом, система всегда будет переходить из одного состояния в другое таким путем, что средняя величина действия окажется наименьшей. При этом несущественно, что Т и U теперь выражены через параметры q и их производные, несущественно, что с помощью этих же параметров мы определяем начальное и конечное состояние; принцип наименьшего действия остается справедливым во всяком случае. И здесь из всех путей, могущих служить переходом от начального состояния к конечному, найдется один и только один, для которого средняя величина действия будет наименьшая. Таким образом, принцип наименьшего действия достаточен для нахождения дифференциальных уравнений, определяющих изменения параметров q. Получаемые этим приемом уравнения представляют собой другую форму уравнений Лагранжа.

Для того чтобы составить эти уравнения, нам нет надобности знать ни соотношений, которые связывают параметры q с координатами гипотетических частиц, ни масс этих частиц, ни выражения U в функции координат этих частиц. Все, что нам нужно знать, это выражение U в функции q и выражение Т в функции q и их производных, т. е. выражения кинетической и потенциальной энергий в функциях экспериментальных данных.

Затем будет иметь место одно из двух: либо для надлежащим образом выбранных функций Т и U уравнения Лагранжа, составленные в соответствии с только что сказанным, окажутся тождественными с дифференциальными уравнениями, выведенными из опыта; либо же вовсе не будет таких функций Т и U, для которых такое согласие имело бы место. Ясно, что во втором случае никакое механическое истолкование невозможно.

Итак, необходимое условие возможности механического истолкования состоит в том, чтобы можно было выбрать функции Т и U, которые удовлетворяли бы принципу наименьшего действия и вытекающему из него принципу сохранения энергии.

Впрочем, это условие и достаточно; в самом деле, пусть удалось найти функцию U параметров q, представляющую одну из частей энергии; пусть другая часть энергии, обозначенная нами через T является функцией q и их производных и имеет вид однородного многочлена второй степени относительно этих производных; и, наконец, пусть лагранжевы уравнения, образованные с помощью этих двух функций Т и U, согласуются с данными опыта.

вернуться

20

Добавим, что U будет зависеть только от q; T будет зависеть от q и от их производных по времени и представится однородным многочленом второй степени относительно этих производных.