Выбрать главу

Ванна с двойными стенками наполнена дестиллированной водой. Пространство между стенками также наполнено водой, которая служит для регулирования температуры воды в ванне. Внутри на специальных опорах покоятся оба сличаемых эталона. Ванна укреплена на тележке, позволяющей осуществлять передвижения в направлении, перпендикулярном длине сличаемых мер. По обеим сторонам ванны на каменных опорах укреплены в вертикальном положении два микроскопа. Оба эталона по очереди подводят под окуляры этих микроскопов и производят два отсчета для двух штрихов образцового метра. Затем подводят проверяемый метр и производят такие же два отсчета для его штрихов. Результаты сравнивают и определяют фактическую длину проверяемого метра. {112}

На протяжении нескольких десятилетий усилия науки направлены были к тому, чтобы добиться предельной точности в установлении величины метра — этой всеобщей международной единицы длины.

Но лишь в конце XIX века ученые получили возможность, используя длину световых волн, производить измерения с настолько высокой степенью точности, что многократные измерения одной и той же величины не показали какого-либо существенного различия. Метр, выраженный в длинах этих волн, получил ту устойчивость, к которой стремились ученые на протяжении многих лет.

Глава II. НЕИЗМЕННАЯ МЕРА

Немного физики

Чтобы понять, в чем состоит способ измерения с помощью длины световых волн, кратко напомним некоторые сведения из физики света.

Представим себе темную комнату с небольшим круглым отверстием в одной стене и белым экраном на противоположной. Если в отверстие направить пучок параллельных солнечных лучей, то на экране появится световое круглое пятно. На пути этого пучка лучей поместим стеклянную призму. Лучи, проходя через призму, изменят свой путь и упадут на стену уже в другом месте. Это явление носит название преломления лучей света. Призму следует поставить так, чтобы преломившиеся лучи шли внутри призмы параллельно ее основанию. На экране мы отметим еще одну странность — на нем не будет уже белого круглого пятна; вместо него появится разноцветная полоса. Верхний край полосы будет фиолетового цвета, нижний — тёмнокрасного. Между этими цветами будет еще много разных цветов, но главных, наиболее резко отличимых будет еще шесть: синий, голубой, зеленый, желтый, оранжевый, красный. Вся разноцветная полоса носит название солнечного спектра; его появление вызвано разложением луча белого солнечного света на составляющие его разноцветные лучи.

Для более четкого воспроизведения спектра существуют специальные приборы — спектроскопы. С помощью такого прибора ученый Фраунгофер открыл в 1814 году, что солнечный спектр пересечен множеством темных линий. Они получили название фраунгоферовых линий. Их положение в спектре неизменно. Наиболее заметные из {113} фраунгоферовых линий (всего их насчитывают несколько тысяч) разделяют спектр на уже известные восемь частей: тёмнокрасную, светлокрасную, оранжевую, желтую, зеленую, голубую, синюю, фиолетовую.

Отдельные, четко окрашенные полосы порождаются одноцветными лучами, которые в физике света называются монохроматическими. Это слово составлено из двух греческих слов: «монос» — один и «хрома» — цвет.

Арифметика световых волн

Всякое вещество, находящееся в раскаленном состоянии, излучает в окружающее пространство энергию. Распространение энергии происходит волнообразно со скоростью 299 800 километров в секунду. Эти волнообразные колебания создают в человеческом глазу ощущение света.

Установлено, что каждый одноцветный луч имеет постоянную, только ему свойственную длину волны. Именно от длины волны и зависит восприятие глазом того или иного цвета.

Внутри каждого из восьми основных участков спектра, разделенных линиями, существует огромное количество оттенков данного цвета со свойственной каждому оттенку характерной длиной волны. Но так как внутри одного цвета разница между длинами волн различных оттенков ничтожно мала, то для практических целей ею пренебрегают и принимают для каждого из восьми цветных участков по одной характерной длине волны, выраженной в метрических единицах.