Здесь невозможно дать его доказательства, которое зависит от многочисленных и сокровеннейших тайн науки о числах; мы намерены посвятить этому предмету целую книгу и продвинуть удивительным образом эту часть Арифметики за пределы, известные в древности.
OBSERVATIO D. P. F
XIX (p. 188)
Ad quæstionem XXXV Libri IV.
Datum numerum dividere in tres numeros, ut qui fit primo in secundum ducto, sive addito tertio, sive detracto, quadratum faciat. Esto datus 6.
Ita facilius fiet operatio, datus numerus 6. utcunque dividatur v. g. [verbi gratia] in 5. et 1. productus demptâ unitate hoc est 4. per 6. datum numerum dividatur, eveniet 2/3 Quem si turn à 5. tum ab 1 abstuleris duo residua 13/3 et 1/3 erunt duæ priores partes numeri dividendi 3. igitur erit 4/3[20].
Перевод:
Это можно сделать более легким способом. Разложим произвольным образом данное число 6 на две части, например на 5 и 1. Произведение их, из которого вычтена единица, т. е. 4, поделим на данное число 6, получится 2/3. Это частное вычтем как из 5, так и из 1; тогда оба остатка 13/3 и 1/3 можно взять в качестве двух первых частей числа, которое должно быть разложено; тогда третья будет 4/3.
OBSERVATIO D. P. F
XX (p. 203)
Ad commentarium in quæstionem XLIV Libri IV.
QUAESTIO. — Invenire tres numeros, ut compositus ex tribus multiplicatus in primum faciat triangulum, in secundum faciat quadratum, in tertium faciat cubum.
BACHETUS. — … Adverte postremo, in fingendo latere ultimi quadrati, talem adhibendam esse cautionem, ut valor Numeri reperiatur in integris numeris, quum numerus triangulus non posset esse nisi integer. Id autem semper succedet operando modo a Diophanto tradito, si quadrati latus fingatur a tot Numeris qui sint latus quadratorum in numero quadrato æquando contentorum -1. Cæterum vix aliter id fieri posse, satis experiendo deprehendes[21].
Experientiam non satis exactam fecit Bachetus. Sumatur quilibet cubus v. g. [verbi gratia] cuius latus multiplici ternarii superaddat unitatĕ Erunt, v.g. [verbi gratia], 2Q — 344 æquando triangulo ergo 16.Q — 2751 æquabuntur quadrato cuius latus finges si libet, 4N — 3. etc. Nihil enim vetat quo minus generali methodo loco etiam ipsius 3. reliquos in infinitum impares usurpemus, variando cubos.
Перевод:
Сделанные Баше попытки недостаточно точны. Действительно, возьмем в качестве V3 произвольный куб, сторона которого превосходит кратное трех на единицу. Например,
2x2 — 344 нужно приравнять треугольнику[22];
значит,
16x2 — 2751 будет равно квадрату,
в качестве корня которого можно взять, если угодно, 4x — 3 и т. д.
На самом деле ничто не мешает обобщить метод и взять вместо 3 другое произвольное нечетное число, только надо выбрать соответствующий куб.
OBSERVATIO D. P. F
XXI (p. 209)
Ad commentarium in qusestionem XLV Libri IV.
QUAESTIO DIOPHANTI. — Invenire tres numeros, ut intervallum majoris et medii ad intervallum medii et minoris datam habeat rationem, sed et bini sumpti quadratum conficiant.
BACHETUS. — …Quemadmodum ergo in hac quæstione Diophantus docet modum quo duo numeri simul æquentur quadrato, quum uterque componitur ex Numeris et unitatibus, et numeri Numerorum sunt inæquales, nec habent rationem quadrati ad quadratum, numeri autem unitatum sunt inæquales et quadrati: sic aio modum dari posse resolvendi duplicatam æqualitatem, quum uterque propositorum numerorum quadrato æquandorum componitur ex Numeris et unitatibus, et numeri Numerorum sunt inæquales, nec habent rationem quadrati ad quadratum, sed et numeri unitatum inæquales sunt, sive quadrati sint, sive non. Id autem prastabimus in duplici casu.
Primus casus est, quum numerorum quadrato æquandorum intervallum tale est ut, eo per aliquem unitatum numerum multiplicato vel diviso, et producto vel quotiente a minore propositorum numerorum detracto, supersit unitatum numerus solus quadratus…
Secundus casus est, quum numerorum quadrato æquandorum intervallum tale est ut, eo per aliquem unitatum numerum multiplicato vel diviso, et producto vel quotiente a minore propositorum numerorum detracto, deficiat unitatum numerus solus, qui ad multiplicatorem vel divisorem rationem habeat quadrati ad quadratum…
Sed proponatur si placet hæc duplicata æqualitas nempè 2N. + 5. et 6N.+3. æquandi quadrato. Quadratus æquadus 2N. + 5. erit 16 et quadratus æquandus 6N. + 3. erit 36. et invenientur alij in infinitum quæstioni satisfacientes, nec difficile est regulam generalem ad huiusmodi quæstionum solutionem proponere, ut vix limitatio ista Bacheti sit tanto viro digna, cum ad infinitos casus extendi, quod in duobus tantum adinvenit, facillime possit, imo et ad casus omnes possibiles.
Перевод:
Но пусть будет предложено, например, двойное равенство: 2x + 5 и 6x + 3 равны квадрату:
2x+5 можно взять равным 16,
6x+3 можно взять равным 36,
и можно найти бесконечно много других, удовлетворяющих задаче. К тому же нетрудно дать общее правило для решения задач этого рода, так что ограничения, данные Баше, едва ли достойны такого мужа, потому что можно легко распространить то, что он нашел для двух случаев, на бесконечное число случаев, более того, на все возможные случаи.
OBSERVATIO D. P. F
XXII (p. 215)
Ad quæstionem III Libri V.
Dato numero apponere tres numeros, ut quilibet ipsorum et qui a binis producitur quibusvis, datum adsumens numerum, faciat quadratum.
Ex hac propositione facilè deducetur sequens quæstio. Invenire 4. numeros eâ conditione, ut quod sub binis producatur, adscito dato numero faciat quadratum. Inveniantur tres quæstioni satisfacientes ita ut singuli dato numero aucti conficiant quadratos iuxta hanc propositionem. Ponatur quartus inveniendus esse 1N. + 1 orietur triplicata æqualitas cuius solutio nostræ methodi beneficio erit in promptu. Vide adnotata ad 24. quæstionem lib. 6. solvetur itaque quæstio quam proposuit Bachetus[23] ad quæstionem 12. lib. 31. per hanc methodum quæ cum multò sit generalior, hoc præterea amplius habet quam methodus Bacheti, quod tres priores numeri aucti dato numero conficiant quadratos in nostrâ solutione. An verò ita solvi possit quæstio ut etiam quartus auctus dato numero conficiat quadratum, Hoc sanĕ hactenus ignoramus. Inquiratur itaque ulterius[24].
Перевод:
Из этого предложения легко выводится решение следующего вопроса:
20
La solution de Fermat, fondée sur une identité facile à reconnaître, est essentiellement différente de celle de Diophante.
21
La solution de Diophante, avec les généralisations de Bachet, peut se représenter comme suit.
Soient
et
il vient
Posons maintenant
β=
on
α(α+1)/2 + 2
d’où l’on posera
(2α+1)2 ou 16
et
Mais il faut que α soit entier et, par conséquent, que (8
Si l’on prend δ=1, comme l’a fait Diophante, et comme Bachet l’a cru nécessaire, on peut prendre tout à fait arbitrairement les entiers z et γ.
Fermat prend
γ=7, δ=3.
23
Page 110. — Soient
La solution de Bachet revient à poser
ce qui satisfait aux conditions pour trois nombres. Si, pour le quatrième, on pose
on n’aura evidemment qu’a satisfaire en outre à la condition bien facile que
soit un carré indeterminé.
Bachet l’a résolue, en fait, de deux fagons différentes: 1° par rapport à
24
Dans l’Observation XVI, Fermat a donné une solution pour le cas où le nombre à ajouter est l’unité.