Вспомним теперь законы Ньютона и сформулируем их в некоторой инерциальной системе.
Первый закон — «В инерциальной системе отсчета всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние».
Стоит обратить особое внимание, что первый закон механики торжественно провозглашает для свободного тела, рассматриваемого в инерциальной системе, полное равноправие состояний покоя и равномерного прямолинейного движения.
Довольно очевидно, что если ввести какую-либо другую систему отсчета, равномерно и прямолинейно движущуюся относительно нашей инерциальной системы, то в этой новой системе свободное тело также сохраняет свою скорость неизменной. Таким образом, первый закон Ньютона и в этой «новой» системе имеет точно такой же вид, как и в «старой» инерциальной системе.
И напротив, если для описания состояния свободного тела использовать систему отсчета, ускоренно движущуюся относительно нашей инерциальной системы, то в этой «ускоренной» системе отсчета поведение свободного тела уже не будет описываться первым законом Ньютона. В такой «нехорошей» системе отсчета свободное тело не будет находиться в состоянии покоя или равномерного прямолинейного движения. Оно будет двигаться с ускорением.
Можно сделать вывод: если найдена одна система отсчета, в которой для свободного тела выполняется первый закон Ньютона, то этот же закон будет соблюдаться в любой из бесконечного числа систем отсчета, равномерно и прямолинейно движущихся относительно первичной системы.
И с другой стороны, существует бесконечное множество систем отсчета, в которых первый закон Ньютона не соблюдается. А именно: любая из систем, ускоренно движущихся относительно инерциальной системы.
Возможно, предыдущие рассуждения оставили чувство неудовлетворенности. Ведь мы сами утверждали, что необходимо добиваться полной ясности и четкости, даже говоря о самых очевидных вещах. Поэтому, как ни очевидно утверждение: «Если первый закон Ньютона выполняется в одной системе отсчета, то он выполняется и во всех системах отсчета, равномерно и прямолинейно движущихся относительно нашей», — его нужно обосновать.
Схема рассуждений должна быть примерно такой. Пусть дана какая-то система отсчета: обозначим ее для удобства, скажем, буквой K. В ней мы умеем описывать движение тел и предметов при помощи законов Ньютона. Так, если изучаемое тело изолировано и свободно, оно в нашей системе либо покоится, либо движется с постоянной скоростью V.
Но вот есть другая система отсчета, скажем K1, которая движется относительно К равномерно и прямолинейно с известной нам скоростью v.
При этих условиях мы должны научиться определять положение изучаемого тела в новой системе отсчета. Ведь чтобы ответить на вопрос, каков характер движения тела в новой системе K1, надо знать его координаты в этой системе в любой момент времени.
Иными словами, нужно найти закон перехода от одной системы отсчета к другой.
Найти этот закон довольно просто в самом общем случае, но мы рассмотрим наипростейший, а именно: во-первых, когда система K1 движется с постоянной скоростью вдоль оси x системы K; и во-вторых, когда скорость нашего свободного тела V направлена также вдоль оси x системы K.
Тогда, если в момент t0 = 0 системы отсчета совпадали, то за время t начало координат системы K1 «уедет» на расстояние S = vt. Как видно из чертежа, координаты тела в новой системе можно найти, зная координаты в старой системе и используя очевидные соотношения:
x1 = х – vt;
у1 = у;
z1 = z.
Прошу поверить на слово, что если рассматривать общий случай (скорости V и v направлены не вдоль осей и не совпадают по направлениям), наши выводы останутся правильными.
Но вернемся к примеру. В каждый данный момент времени в старой системе отсчета координаты нашего тела определяются соотношениями: