Выступая в защиту теории Дарвина, К. А. Тимирязев опровергал вывод Дженкина о неизбежности «растворения» вновь возникающих признаков в потомстве с помощью простых и наглядных примеров.
«Я указывал,— писал Тимирязев,— что при одном шестипалом родителе не получатся дети с 51/2 пальца... Я указывал, наконец, как на самый наглядный пример (выводивший из себя моих противников) на нос Бурбонов, сохранившийся у герцога Немурского, несмотря на то, что в его жилах течет всего 1/128 крови Генриха IV»[13].
*Герцог Немурский был потомком Генриха IV в 7־м поколении. В каждом поколении кровь Бурбонов смешивалась пополам с кровью других аристократических семейств, поэтому 7־му прямому потомку Бурбонов досталась лишь (1/2)7 = 1/128 часть.
Тимирязев считал, что на основании опытов Менделя «кошмар Дженкина, испортивший столько крови Дарвину, рассеивается без следа».
На определенном этапе развития науки этот вывод казался неоспоримым. Но новые достижения науки рождают новые взгляды, а вместе с ними и множество новых проблем.
Неправота Дженкина очевидна до тех пор, пока речь идет о наследовании одного признака от одного предка. Современные теоретики эволюции утверждают, что полезными (а следовательно, и подверженными естественному отбору) являются не отдельные признаки, а сложные совокупности, принадлежащие множеству организмов (популяции).
В самом деле, какая польза от вошедшей в историю выдающейся формы носов потомков Бурбонов и во имя какой выгоды стал бы сохранять ее для потомков отбор? И хотя вопреки утверждениям Дженкина этот характерный внешний признак Бурбонов не растворился при смене 7 поколений, он в то же время не стал началом формирования нового «вида» (народности, нации) людей. Наоборот, помимо герцога Немурского, сохранившего нос Бурбонов в своей 1/128 доле унаследованных признаков, доставшихся ему после смены 7 поколений, за это время родились еще сотни праправнуков Генриха IV с самой что ни на есть заурядной формой носа. И если один признак действительно не растворяется, а целиком передается потомкам, то совокупности признаков, содержащиеся во множестве генов, неизбежно перемешиваются в потомстве, поэтому хотя в 7־м поколении и появится потомок с носом Генриха IV, но вряд ли можно ожидать, что в каком-нибудь поколении вдруг возродится вся совокупность черт этого зафиксированного живописцами исторического лица.
И если считать, что каждый из признаков возникает случайно и случайным образом перемешиваются совокупности признаков у последующих поколений, то становится вообще непонятным, каким образом может сохранять и накапливать полезные совокупности естественный отбор. По всей видимости, появляющиеся в результате мутаций признаки не являются «чисто случайными», как не могут быть «чисто случайными» используемые авторами оригинальных научных или художественных текстов новые комбинации слов и букв.
При написании текстов авторы могут варьировать комбинации применяемых слогов и слов только в пределах существующих фонетических и грамматических правил.
В процессе мутаций природа тоже установила для энтропии определенные рамки, и, подобно тому как буквы «вплетены» в несущие смысловую нагрузку слова и фразы, каждый вновь возникающий признак взаимосвязан с целым комплексом одновременно изменяющихся признаков и свойств. Изменениям подвержены не отдельные гены, а целые совокупности взаимосвязанных генов, и единственный путь к познанию сложных наследственных механизмов заключается в том, чтобы научиться читать те «записи», которые заключает в себе наследственный генетический код.
Расшифровав азбуку генетического кода, ученые обнаружили, что он построен по принципу всех письменных текстов. Есть алфавит, включающий в себя четыре буквы, роль которых выполняют четыре различные химические соединения (генетики называют их нуклеотидами): аденин — А; гуанин — Г; тимин — Т; цитозин — Ц. Из четырех букв алфавита можно составить 64 трехбуквенных слова типа ААА, ААГ, ТЦГ и т. д. Слова этого лексикона соответствуют «названиям» аминокислот [14].
*Слово «название» взято в кавычки, потому что те названия аминокислот, которыми пользуются биохимики, не похожи на те «названия», которые «присвоила» им природа. Например, глутаминовая кислота кодируется в ДНК генетическим словом АЦТ, аргинин — АГЦ, тирозин — ААТ и т. п. При транскрипции этих слов из ДНК в РНК слово АЦТ перекодируется в слово УГА (где У — урацил), слово АГЦ перекодируется в УЦГ и т. д. Из 64 слов генетического словаря 61 слово соответствует аминокислотам, так как несколькими разными трехбуквенными сочетаниями (триплетами) кодируется одна из 20 аминокислот. Остальные три слова служат командами окончания процесса синтеза белков.
13
Герцог Немурский был потомком Генриха IV в 7־м поколении. В каждом поколении кровь Бурбонов смешивалась пополам с кровью других аристократических семейств, поэтому 7־му прямому потомку Бурбонов досталась лишь (1 /2)7 = 1/128 часть.
14
Слово «название» взято в кавычки, потому что те названия аминокислот, которыми пользуются биохимики, не похожи на те «названия», которые «присвоила» им природа. Например, глутаминовая кислота кодируется в ДНК генетическим словом АЦТ, аргинин — АГЦ, тирозин — ААТ и т. п. При транскрипции этих слов из ДНК в РНК слово АЦТ перекодируется в слово УГА (где У — урацил), слово АГЦ перекодируется в УЦГ и т. д. Из 64 слов генетического словаря 61 слово соответствует аминокислотам, так как несколькими разными трехбуквенными сочетаниями (триплетами) кодируется одна из 20 аминокислот. Остальные три слова служат командами окончания процесса синтеза белков.