Выбрать главу

В любой момент времени данные структур proc для всех процессов должны присутствовать в памяти, хотя остальные структуры данных, включая образ процесса, могут быть перемещены во вторичную память, — область свопинга. Это позволяет ядру иметь под рукой минимальную информацию, необходимую для определения местонахождения остальных данных, относящихся к процессу, даже если они отсутствуют в памяти.

Структура proc является записью системной таблицы процессов, которая, как мы только что заметили, всегда находится в оперативной памяти. Запись этой таблицы для выполняющегося в настоящий момент времени процесса адресуется системной переменной curproc. Каждый раз при переключении контекста, когда ресурсы процессора передаются другому процессу, соответственно изменяется значение переменной curproc, которая теперь указывает на структуру proc активного процесса.

Вторая упомянутая структура — user, также называемая u-area или u-block, содержит дополнительные данные о процессе, которые требуются ядру только во время выполнения процесса (т.е. когда процессор выполняет инструкции процесса в режиме ядра или задачи). В отличие от структуры proc, адресованной указателем curproc, данные user размещаются (точнее, отображаются) в определенном месте виртуальной памяти ядра и адресуются переменной u. На рис. 3.2 показаны две основные структуры данных процесса и способы их адресации ядром UNIX.

Рис. 3.2. Основные структуры данных процесса

В u-area хранятся данные, которые используются многими подсистемами ядра и не только для управления процессом. В частности, там содержится информация об открытых файловых дескрипторах, диспозиция сигналов, статистика выполнения процесса, а также сохраненные значения регистров, когда выполнение процесса приостановлено. Очевидно, что процесс не должен иметь возможности модифицировать эти данные произвольным образом, поэтому u-area защищена от доступа в режиме задачи.

Как видно из рис. 3.2, u-area также содержит стек фиксированного размера, — системный стек или стек ядра (kernel stack). При выполнении процесса в режиме ядра операционная система использует этот стек, а не обычный стек процесса.

Состояния процесса

Жизненный цикл процесса может быть разбит на несколько состояний. Переход процесса из одного состояния в другое происходит в зависимости от наступления тех или иных событий в системе. На рис. 3.3 показаны состояния, в которых процесс может находиться с момента создания до завершения выполнения.

1. Процесс выполняется в режиме задачи. При этом процессором выполняются прикладные инструкции данного процесса.

2. Процесс выполняется в режиме ядра. При этом процессором выполняются системные инструкции ядра операционной системы от имени процесса.

3. Процесс не выполняется, но готов к запуску, как только планировщик выберет его (состояние runnable). Процесс находится в очереди на выполнение и обладает всеми необходимыми ему ресурсами, кроме вычислительных.

4. Процесс находится в состоянии сна (asleep), ожидая недоступного в данный момент ресурса, например завершения операции ввода/вывода.

5. Процесс возвращается из режима ядра в режим задачи, но ядро прерывает его и производит переключение контекста для запуска более высокоприоритетного процесса.

6. Процесс только что создан вызовом fork(2) и находится в переходном состоянии: он существует, но не готов к запуску и не находится в состоянии сна.

7. Процесс выполнил системный вызов exit(2) и перешел в состояние зомби (zombie, defunct). Как такового процесса не существует, но остаются записи, содержащие код возврата и временную статистику его выполнения, доступную для родительского процесса. Это состояние является конечным в жизненном цикле процесса.

Рис. 3.3. Состояния процесса

Необходимо отметить, что не все процессы проходят через все множество состояний, приведенных выше.

Процесс начинает свой жизненный путь с состояния 6, когда родительский процесс выполняет системный вызов fork(2). После того как создание процесса полностью завершено, процесс завершает "дочернюю часть" вызова fork(2) и переходит в состояние 3 готовности к запуску, ожидая своей очереди на выполнение. Когда планировщик выбирает процесс для выполнения, он переходит в состояние 1 и выполняется в режиме задачи.