Выбрать главу

Хто позаздрить людині, яка мусить темної ночі знайти в копиці сіна загублену голку? Скажете, ніхто? Помиляєтесь! Є немало таких хіміків, які сказали б, що ця (звичайно, вигадана мною) людина займається грою в бирюльки. І у відповідь негайно проаргументували б своє твердження ясною мовою арифметики.

Справді, скільки може важити копиця сіна? Кілограмів 400. А голка? Приблизно одну десяту грама, або 10–4 кг. Якщо 400 кг прийняти за 100 %, то скільки процентів становитиме 0,1 г?

Отже, в голці 25 мільйонних часток процента від ваги копиці сіна. Хімік сказав би, що оперує в межах п’ятого десяткового знака. Але для хімії робота з визначенням такої кількості домішок, яка криється в п’ятому десятковому, давно пройдений етап. Ось, скажімо, шостий або сьомий десятковий знак — тут треба попрацювати.

Та якби хімія обмежувалась тільки шостим і сьомим знаками!

Вже в середині п’ятдесятих років техніка почала вимагати від хіміків не тільки визначення кількостей домішок, але й видалення їх. А це далеко не одне й те ж. Одна справа знайти, скільки до основної речовини домішано того чи іншого елемента, а зовсім інша — видалити домішки, причому так, щоб не внести нових. І це друге завдання набагато складніше від першого. Та якщо техніка, промисловість кажуть «треба», хімія повинна відповісти «є»!

Навіщо потрібні речовини такої надприродної чистоти?

Наше покоління було свідком створення одної з чудових галузей фізики — науки про напівпровідники. Більшість напівпровідників виявляє свої властивості в стані дуже високої чистоти. Ось, наприклад, метал германій. Сучасна напівпровідникова техніка вимагає для нього чистоти 99,9999999999 %, тобто на один атом домішок тисячі мільярдів атомів германію. Два атоми домішок на цю кількість — і напівпровідник вже непридатний. Так перед хіміками у всій величі постала вершина десятого десяткового знака.

Йдеться про одержання не якихось унікальних двох-трьох грамів речовини надвисокої чистоти, а про заводи, де ці речовини виробляють сотнями й тисячами кілограмів. Читач пам’ятає, якими труднощами супроводжувалось завоювання «вершин» шостого і сьомого десяткових знаків. Тепер же треба було взяти десятий. А подібно до того, як кожний метр на великій висоті дається альпіністові важче, ніж кілометр по рівній дорозі, так само кожна послідовна дев’ятка в числі, що виражає чистоту препарата, дається хімікові з дедалі наростаючим зусиллям.

Одержання речовини з ступенем чистоти 99,99 %, або речовини «чотири дев’ятки», не являє тепер труднощів. Але чи давно це так?

Ось три статті, вміщені в різних хімічних журналах. В першій із них читаємо: «Нам вдалося одержати надзвичайно чисту речовину чистотою 99,99 %». В другій написано: «Вміст основної речовини в продукті — 99,999 %. Таким чином, одержаний продукт можна вважати відносно чистим». В третій статті говориться таке: «Одержаний зразок був досить брудним: вміст основного металу в ньому становить лише 99,9999 %».

В чому ж річ? Висловлювання в цих статтях повністю виключають одне одного. Просто перша праця написана на початку 20 століття, друга — в двадцяті роки, а третя з’явилася в наші дні. Речовина, яка шістдесят років тому вважалася чистою, в наш час не може зберегти свою колишню репутацію.

Цікаво хоча б коротенько розглянути, як хімікам вдається добувати речовини такої надзвичайної чистоти.

Одержання таких «надчистих» речовин стало можливим завдяки величезним успіхам аналітичної хімії, бо при очищенні речовини треба насамперед знати, від яких домішок слід її очищати, а потім — скільки їх міститься в основній речовині. На всі ці запитання відповідь дає аналітична хімія. І чим вищий ступінь очищення, тим досконалішими повинні бути прийоми цієї науки.

З усього арсеналу засобів, які є в розпорядженні аналітиків, ми виберемо для ілюстрації декілька, однак і їх досить, щоб показати можливості цієї науки.

Ось один з наймолодших методів аналізу — радіоактиваційний. Метал, який мають очистити, вміщують у ядерний реактор або циклотрон. При опромінюванні металу нейтронами або іншими елементарними частками його атоми — не всі, звичайно, — стають радіоактивними. Набувають радіоактивності і всі атоми домішок. Однак характер випромінювання одного штучного радіоактивного елемента різко відрізняється від характеру випромінювання іншого. Визначаючи характер та інтенсивність кожного типу випромінювання, можна легко визначити кількість і характер домішок у металі. Цей метод дає можливість визначати домішки в кількості до 10–13 г.