Выбрать главу

Рис. 27. Оптические объективы с флюоритовыми линзами (заштриховано), выпускаемые ЛОМО им. В. И. Ленина

Объяснение в тексте

Рис. 28. Кривые, характеризующие хроматизм положения, область резкого изображения в различных системах объективов микроскопов

1 — ахромат;

2 — флюоритовый объектив;

3 — апохромат из системы флюорит—стекло

Объективы-апохроматы не имеют хроматической аберрации и дают изображение объекта с неискаженной окраской. Это достигается исправлением вторичного спектра именно благодаря введению деталей из оптического флюорита в паре с кварцевым и другими стеклами. Оптические схемы обычного и масляного объективов апохроматов даны на рис. 27, в, г. Апохроматы дают резкое изображение в наибольшем по сравнению с другими системами диапазоне спектра (рис. 28), отличаются высоким уровнем коррекции аберраций и позволяют получать высококачественные контрастные изображения с неискаженной цветопередачей мельчайших (до 0,25 мкм) элементов биологических структур.

Объективы-планапохроматы были созданы в 50-х годах благодаря появлению особых сверхтяжелых стекол, близких по значению частных относительных дисперсий к флюориту. Они позволили повысить эффективное поле наблюдения по сравнению с апохроматами от 5—10 до 25—28 мм. В его пределах сохраняется неискаженное изображение объекта. Схемы и конструкции двух планапохроматов приведены на рис. 27, д, е. Один из них, ОПА-3, трехкомпонентный. Его первым компонентом служит менисковый компенсатор. Второй компонент состоит из двух двойных или тройных линз, положительные из них выполнены из оптического флюорита, отрицательные — из особых стекол. Третий компонент — отрицательный мениск относительно небольшой силы для исправления астигматизма. Применение планапохроматов исключает необходимость перефокусировки микроскопа для исследования периферийных участков. Оно резко улучшило качество микрофотографий и открыло возможности для внедрения машинных методов обработки изображений.

Нелюминесцирующие объективы, или «неофлюоры» (новые флюоритовые системы), представляют собой новый класс объективов, отличающихся улучшенной коррекцией вторичного спектра и кривизны изображения по сравнению с ахроматическими объективами, простотой оптической конструкции и, что самое важное, отсутствием собственной люминесценции [Иванова, 1979, 1980]. Последнее достигается тем, что эти объективы создаются на основе нелюминесцирующих разностей природного флюорита. Этот тип объективов используется при исследовании в свете люминесценции особо тонких биологических структур, требующих высокой разрешающей способности, какими являются, например, хромосомы. Схема ряда разработанных в СССР нелюминесцирующих объективов приведена на рис. 27, ж, з. Это только основные типы флюоритовых объективов, главные особенности которых определяются именно особыми свойствами флюорита как оптического материала. Кроме того, флюоритовые детали используются в объективах-монохроматах, объективах для ИК-области спектра, зеркальных и зеркально-линзовых объективах, в окулярах и других оптических системах.

Объективами с флюоритовой оптикой комплектуются различные классы современных микроскопов: биологические, металлографические, минералогические и петрографические поляризационные и многие другие. В последнее время широкое распространение получили универсальные микроскопы, приспособленные для исследования любых объектов. Среди них наиболее известны микроскопы Nu-2E и Neophot-2 производства предприятия «Карл Цейс Йена» в ГДР. Они снабжены всеми типами флюоритовых объективов и окуляров.

Наиболее полно широкие возможности флюоритовой оптики раскрываются при исследовании биологических объектов и явлений. Биологические микроскопы имеются не только в биологических, но и в медицинских, химических, физических и других лабораториях.

Отечественная промышленность на базе Ленинградского оптико-механического объединения им. В. И. Ленина в настоящее время выпускает биологические микроскопы серии «Биолам» четырех классов: С — студенческие, Д — дорожные, Р — рабочие и Л — лабораторные. Каждый из них изготовляется в нескольких вариантах.

Микроскопы «Биолам-С,-Д,-Р» относительно упрощенные и укомплектованы в основном ахроматическими объективами. Однако в комплекте рабочей модели «Биолам Р-17», который применяется в основном в клинических лабораториях, есть четыре апохроматических объектива, резко расширивших его возможность. Столь богатое оснащение крупносерийного рабочего прибора оказалось возможным благодаря хорошо налаженной индустрии искусственных кристаллов флюорита. Более совершенные агрегатные лабораторные микроскопы «Биолам Л-211» и «Биолам Л-212» имеют по шесть апохроматических объективов ×10—90.

Микроскопом наиболее широких возможностей является универсальный исследовательский биологический микроскоп МБИ-15, хорошо оснащенный разнообразной флюоритовой оптикой (как апохроматами, так и планапохроматами), в том числе и обеспечивающей наблюдение в свете видимой люминесценции, которая возбуждается сине-фиолетовым участком спектра 400—440 нм и ультра-фиолетовыми лучами 360 нм. Апохроматическими объективами укомплектованы также исследовательские микроскопы МБИ-6 и МББ-1А.

Создание новых биологических микроскопов с флюоритовой оптикой позволило внедрить в практику биологических и медицинских исследований ряд новых эффективных методов. Благодаря применению высококачественной апохроматической оптики микроскопов значительно повысилась роль клинико-лабораторных анализов, при которых выясняется теперь не только характер заболеваний, но и устанавливаются стадии и фазы болезни, определяется оптимальность выбранного способа лечения в зависимости от защитных реакций организма.

В современных научных исследованиях широкое развитие получила люминесцентная (флюоресцентная) микроскопия. Благодаря исключительно высокой чувствительности и пространственной избирательности, позволяющей исследовать объекты размером около 0,25 мкм, этот метод применяется в биологии, медицине, минералогии, геохимии. В минералогических препаратах по характеру люминесценции диагностируются микровыделения различных минералов, изучается внутреннее строение минеральных зерен и кристаллов, структура горных пород. С помощью люминесцентного анализа определяется содержание, состав и природа битумов.

Однако наиболее мощным исследовательским средством люминесцентная микроскопия стала в биологии. Многие ткани и органы живых организмов являются люминесцирующими или легко окрашиваются флюоресцирующими веществами. Под люминесцентным микроскопом их можно изучать не разрушая. Более того, разработаны методики и аппаратура для микролюминесцентного изучения живых биологических объектов. Люминесцентная микроскопия эффективно используется для экспресс-диагностики ряда заболеваний, а также в бактериологии, онкологии, иммунопатологии и других областях.

Для люминесцентных исследований на базе нелюминесцирующей флюоритовой оптики создана и выпускается серия люминесцентных микроскопов «Люмам» различного назначения. Для наблюдения и фотографирования изображений биологических и других объектов в свете их люминесценции, возбуждаемой излучением 360—440 нм, предназначены рабочие модели «Люмам-Р1, -Р2, -Р3». Специальные рабочие модели микроскопов «Люмам-Р4, -Р5» приспособлены для изучения вирусов гриппа и гриппоподобных заболеваний. Микроскопы «Люмам И-1, -2, -3» являются исследовательскими и отличаются более широкими возможностями. Для исследования структуры тканей органов человека и животных разработан контактный люминесцентный микроскоп МЛК-1 с оптической головкой, которую можно вводить в малодоступные для исследования органы, проводить их наблюдение и фотографирование во время операции и после нее. Другой контактный люминесцентный микроскоп «Люмам К-1» предназначен для прижизненных исследований клеток и тканей на различной глубине в органах экспериментальных животных. Он позволяет изучать живые объекты в свете собственной люминесценции и в поляризованном свете методами светлого и темного поля. У микроскопов серии «Люмам» спектральная область исследуемой люминесценции 450—650 нм, область возбуждения люминесценции 360—440 нм. Кроме того, промышленность выпускает микроскопы-флюориметры «Люмам-ИУФ-1» и «Люмам-ИУФ-3», позволяющие измерять интенсивность люминесценции. У них область исследуемой люминесценции шире — от 300 до 750 нм.