Выбрать главу

Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Именно тогда, вскоре после появления атомных бомб, Э. Теллер сформулировал идею „супербомбы“. Подобно тому как от капсюля-детонатора провоцируется волна горения (детонации) в химическом взрывчатом веществе, в водородной бомбе Э. Теллера распространяется термоядерная волна по дейтерию, инициированная атомным взрывом. Если устойчивое (незатухающее) горение возможно, то оно, вызванное относительно скромной энергией атомного взрыва, затем при распространении выделяет произвольно большую энергию. Захватывающая перспектива, не правда ли?

В 1951 году, когда я после окончания Московского университета оказался в группе Я.Б. Зельдовича в КБ amp;ndash;11 , там с большим энтузиазмом занимались сходной проблемой (отставая , по-видимому, на год-два от Лос-Аламоса). Сейчас, когда узнаёшь у тех же Д. Хирта и У. Мэтьюза, что за проблемы переживали американские учёные в связи с „супербомбой“, поражаешься, насколько они были сходны с нашими!

Например, для нас с самого начала представлялась очевидной невозможность разжигания чистого дейтерия — это могло осуществиться только через промежуточную область, насыщенную тритием. Но трития требуется так много, что его производство вступает в острую конкуренцию с производством военного плутония на промышленных реакторах. Нет ответа и на главный принципиальный вопрос: осуществим ли стационарный режим горения?

Дело в том, что при любой детонации существует некоторый минимальный размер (радиус детонационного шнура) , ниже которого устойчивого режима не существует. Вещество вследствие собственного энерговыделения разлетается быстрее, чем успевает сгореть. Особенностью же высокотемпературной термоядерной плазмы является наличие не только нижнего, но и верхнего радиуса.

Всякое вещество, предоставленное самому себе, стремится к термодинамическому равновесию, выравниванию температуры между веществом и излучением. Нетрудно подсчитать, что при рассматриваемых параметрах плазмы подавляющая часть энергии приходится на излучение. Образуется, таким образом, паразитный сток энергии от вещества, то есть от горячих материальных частиц, вступающих в ядерную реакцию, в излучение. Однако при небольшом размере „трубы“ большая часть фотонов, не набрав равновесной энергии, покидает горячую область, и энергобаланс оказывается сдвинутым в пользу материи. Этим объясняется наличие двух радиусов — разлётного и радиационного, причём первый должен быть больше некоторого значения, а второй — меньше некоторого другого.

Трудность задачи состояла в том, что радиусы эти оказались близкими. До сих пор осталось невыясненным, есть ли между ними щель, необходимая для существования устойчивого распространения.

Это, скажем так, теоретическая сторона вопроса. А вот как развивались события в плоскости политической.

В 1951 году президент США Г. Трумэн направил комиссии по атомной энергии директиву о возобновлении работы по созданию водородной бомбы. Согласно сведениям из (I) , „к концу 1950 г. Э. Теллер был в отчаянии, потеряв надежду на создание работоспособной конструкции водородной бомбы “. И здесь же: „Осознание того факта, что „классическая супербомба“ нереальна, пришло в считанные месяцы после того, как Трумэн объявил программу, обязывающую учёных сделать такую бомбу “.

К аналогичному выводу в группе Я.Б. Зельдовича пришли к концу 1953 года.

То, что вещество горит тем полней и быстрей, чем выше его плотность, следует из самых общих соображений. Задача состояла в том, чтобы понять, как достичь высокой степени сжатия.

„ Замечательные способы получения чрезвычайно высоких сжатий дейтерия впервые пришли в голову Уламу, когда он размышлял над проблемами повышения эффективности атомных бомб, основанных на делении тяжёлых элементов. У него возникла идея о фокусировке на дейтерии механической энергии, высвобождаемой при взрыве обычной атомной бомбы. Чтобы осуществить такую фокусировку, необходимо надлежащим образом направить ударную волну по окружающему материалу. Этот способ сулил колоссальное сжатие дейтерия.

Когда Улам сообщил Теллеру о своей схеме сжатия дейтерия, во время их исторической встречи в начале 1951 года, Теллер предложил вариант, согласно которому не ударные волны сжатия от взрыва атомного устройства, а радиация от этого первичного взрыва должна вызвать так называемую имплозию, приводящую к сильнейшему сжатию дейтерия. В совместном отчёте Улам и Теллер ссылаются на эти схемы сжатия как на фокусировку энергии атомного устройства с помощью „гидродинамических линз и зеркал для излучения атомного взрыва “.

„ Схема Улама-Теллера, использующая радиацию взрыва с целью сжатия и инициирования отдельно расположенного компонента бомбы, содержащего термоядерное топливо, ознаменовала полный отказ от классической концепции супербомбы Теллера “ (обе цитаты из источника I) .

Как развивались события дальше?

31 октября 1952 года был произведён взрыв (у нас его назвали физическим опытом) термоядерного устройства „Майк“, в котором американцам удалось реализовать упоминаемую схему атомного сжатия. В 1954 году США испытали боевую водородную бомбу, осуществив тем самым окончательный поворот к новой технологии, уцелевшей в основных чертах до наших дней.

Но уже в ноябре 1955 года на Семипалатинском полигоне взорвали нашу водородную бомбу новейшего образца. Стало ясно, что в споре с американскими учёными русские сумели ликвидировать разрыв. Притом в столь короткие сроки, что это не поддавалось, с точки зрения американцев, какому-либо разумному объяснению, кроме одного — шпионаж. Было выдвинуто немало и других версий, так или иначе объясняющих успех советских учёных, но спор и по сей день не закончен.

Виднейший теоретик Лос-Аламоса Г. Бете считает, что открытие Улама-Теллера имело случайный характер. И потому признать, что русский проект развивался по аналогичному пути без американского влияния, — значит уверовать в совершенно невероятное совпадение.

Первоначально „русское чудо“ связывали с предательством Фукса. Однако вскоре разобрались, что Фукс был разоблачён и прекратил свою деятельность в пользу Советского Союза раньше, чем возникла идея Улама. Затем было высказано предположение (переросшее в уверенность) , что русские сумели взять продукты от взрыва „Майк“, распространившиеся в атмосфере, и расшифровать их.

В радиоактивных продуктах взрыва содержится определённая информация — это известно учёным. К примеру, количество трансурановых элементов, рождённых в результате взаимодействия ядерных и термоядерных нейтронов с тяжёлыми атомами, сильно зависит от того, насколько быстро протекают реакции. Скорость же реакции пропорциональна плотности вещества, и наличие далёких трансуранов может свидетельствовать о высокой степени сжатия.

Это теоретически. А на практике дело обстоит следующим образом.

Во-первых, трансуранов мало, их улавливание из атмосферного облака — дело хлопотливое и требует большой тщательности. Подтверждение этой мысли находим у академика Харитона:

„ Получили ли советские учёные полезную информацию для конструирования водородного оружия в результате радиохимического анализа атмосферных проб после термоядерного взрыва в США 1 ноября 1952 г.? Определённо нет, т. к. организация работ у нас была в то время ещё на недостаточно высоком уровне и полезных результатов не дала “ (II) .

Нужно заметить, что и позже, когда подобная работа была хорошо организована, нас интересовали не столько радиоактивные трансурановые элементы, сколько осколки деления, соотношения между различными изотопами, из которых мы выводили степень „термоядерности“, наличие тех или иных ядерных и конструктивных материалов и т. п.

Во-вторых, сведения о сжатии не дают возможности сделать заключение о том, как оно достигнуто, то есть носят косвенный характер. Если бы из анализа радиоактивности последовали тогда глубокие революционные выводы, как представляет себе Г. Бете, то это носило бы характер сенсации. Информация непременно пришла бы к исполнителям в своём первичном виде, так как в самой по себе в ней не содержится для нас элементов секретности. Но тут я со всей определённостью утверждаю, что за всё время наших радиохимических поисков в атмосфере никаких необычных сведений мы не извлекли.