[x]. "Если вы знаете, что существует риск возникновения недоразумений между двумя возможностями, то соответствующие нотации должны различаться очевидным образом". Так что необходимо избегать использования символов, близких по написанию (:- и :=), но с различной семантикой.
Еще одна причина играет роль в данном случае, хотя она включает механизм, пока еще не изученный. В последующих лекциях мы познакомимся с родовыми или универсальными классами, такими как LIST [G], где G, известно как формальный родовой параметр, представляющий произвольный тип. Такой класс может манипулировать сущностями типа G и использовать их в присваиваниях и проверках на равенство. Клиенты, нуждающиеся в использовании такого класса, должны позаботиться о создании типа, служащего в качестве фактического родового параметра. Например, они могут использовать LIST [INTEGER] или LIST [POINT]. Как показывают эти примеры, фактический родовой параметр может быть развернутого типа, как в первом случае, так и ссылочного типа - во втором случае. В подпрограммах такого родового класса, если a и b имеют тип G, то часто полезно использовать присваивания в форме a := b или тесты в форме a = b с намерением получить семантику значений, когда фактический параметр принадлежит развернутому типу, такому как INTEGER, и ссылочную семантику - для ссылочного типа, такого как POINT.
| Примером подпрограммы, нуждающейся в таком дуальном поведении, является процедура вставки элемента x в список. Процедура создает новый элемент списка. Если x целое, элемент должен содержать копию значения x. Если x является ссылкой, то элемент списка должен содержать ссылку на объект, присоединенный к x . |
В таких случаях, правила, определенные выше, гарантируют желаемое дуальное поведение, что было бы недостижимо, если бы требовался различный синтаксис для двух видов семантики. С другой стороны, если во всех случаях требуется единая семантика, то и это достижимо: такое поведение может быть только семантикой значений (так как семантика ссылок не имеет смысла для развернутых типов); поэтому в соответствующих подпрограммах следует использовать clone (или copy) и equal, а не (:= и =).
Форма операций клонирования и эквивалентности
Форма вызова подпрограмм clone и equal является стилевой особенностью, которая может вызвать удивление. На первый взгляд нотация:
clone (x)
equal (x, y)
выглядит не слишком объектно-ориентированной. Догматичное следование принципу "ОО-стиля вычислений" из предыдущей лекции предполагает другую форму (См. "Объектно-ориентированный стиль вычислений", лекция 7):
x.twin -- twin это двойник - клон.
x.is_equal (y)
В первой версии нотации так и делалось, однако возникла проблема пустых ссылок. Вызов компонента вида x.f (...) не может быть корректно выполнен в случае пустого x во время выполнения. В этом случае вызов инициирует исключение, которое повлечет аварийное завершение всей системы, если в соответствующем классе не предусмотрена обработка исключений. Поскольку во многих случаях x может быть действительно пустой ссылкой, то это означало бы, что каждый вызов twin должен предусматривать охрану и выглядеть так:
if x = Void then
z := Void
else
z := x.twin
end
Соответственно, реализация вызова is_equal должна выглядеть (and then является вариантом and. См. "Нестрогие булевы операции", лекция 13):
if
((x = Void) and (y = Void)) or
((x /= Void) and then x.is_equal (y))
then
...
Излишне говорить, что не следует придерживаться этих соглашений. Нам быстро надоест писать подобные витиеватые фрагменты, а когда мы забудем это сделать, то результатом будет ошибка времени выполнения. Окончательный вариант соглашений, сформулированный в данной лекции, замечателен еще и тем, что дает ожидаемые результаты для x, равного void, - clone (x) вернет void, а equal (x, y) вернет true, если и y - void.
Вызов процедуры copy в форме x.copy (y) не создает подобных проблем, поскольку требует непустых x и y. Это следствие семантики процедуры copy, копирующей поля одного объекта в поля другого, и имеющей смысл, только если существуют оба объекта. Как показано далее, такое условие для y фиксируется формальным предусловием copy, заданным в явном виде в документации.
Отметим, что введенная выше функция is_equal существует в библиотеке системы. Причина в том, что часто удобнее определить специфические варианты эквивалентности элементов конкретного класса, перекрыв семантику по умолчанию. Для достижения этого эффекта достаточно переопределить функцию is_equal в соответствующем классе. Функция equal определяется в терминах is_equal (выражением, показанным выше при иллюстрации использования is_equal), и поэтому следует за всеми переопределениями is_equal.
Когда есть функция clone, то нет необходимости в twin. Это связано с тем, что функция clone определена как создание объекта с последующим вызовом copy. Поэтому для адаптации clone к специфике класса достаточно переопределить процедуру copy данного класса. (См. также лекция 16)
Статус универсальных операций
Последние комментарии частично прояснили вопрос о статусе универсальных операций clone, copy, equal, is_equal, deep_clone, deep_equal.
Эти операции не являются языковыми конструкциями, невзирая на их фундаментальную значимость для практики. Они поставляются классом ANY основной библиотеки Kernel. Этот класс имеет то специальное свойство, что каждый класс, созданный разработчиком, автоматически становится наследником (прямым или косвенным) класса ANY. Вот почему становится возможным переопределить вышеупомянутые компоненты для поддержки специального вида эквивалентности или копирования. (См. "Глобальная структура наследования", лекция 16)
Сейчас нет необходимости в деталях, поскольку мы еще вернемся к этой проблеме при изучении наследования. Но уже теперь полезно знать, что благодаря механизму наследования, мы можем полагаться на библиотечные классы, поддерживающие свойства, доступные всем классам, - и каждый класс может изменить их, приспосабливая к своим, специфическим целям.