В заключение необходимо отметить, что скорость горения прессованных зарядов увеличивается при наличии в них трещин и пор, это связано с увеличением площади горения в связи с проникновением пламени по трещинам и порам к глубоким слоям заряда, воспламенением их, отрывом кусков топлива, дальнейшему росту трещин и так далее, вплоть до увеличения давления до критического и переходу его во взрыв.
Влияние теплообмена
Интенсивность теплообмена с окружающей средой также отражается на скорости горения пиросоставов. В связи с этим скорость горения в узких каналах (трубках) должна быть несколько меньше, но в узких каналах в большей мере затрудняется отток газов, создается избыточное давление, особенно, в случае быстрогорящих составов, и поэтому уменьшение скорости горения наблюдается не всегда. При очень малых диаметрах теплопотери становятся настолько велики, что состав вообще теряет способность к распространению горения. Величина предельного диаметра горения, зависит от целого ряда факторов: материала и толщины стенки трубки или канала, рецепта и плотности состава, начальной температуры и давления. Как правило, чем больше тепла выделяется при горении состава в единицу времени, то есть чем быстрее горит состав, тем меньше для него значение минимального диаметра. В связи с теплопотерями в окружающее пространство следует разобрать вопрос о минимально возможной скорости горения. Осуществить при нормальных условиях температуры и давления процесс горения имеющий очень малую скорость (примерно 0,001мм/сек), по-видимому, невозможно по той причине, что в следствии малого теплоприхода в единицу времени и относительно больших теплопотерь в окружающее пространство не удается создать той значительной разности между температурой в газовой и конденсированной фазах, которая является одной из самых характерных черт процесса горения.
Одной из самых медленно горящих смесей является смесь из 96% NH4NO3 и 4% древесного угля, горящая при давлении 1кгс/см2 и температуре 20°С (
Принимаем приближенно объем газов, образующихся при горении смеси v = 700см3 / г и температуру горения 900°К, получаем скорость течения газов в пламени, а следовательно, и скорость их горения равной: U’ = 0,008 • 700 • / 293
Влияние плотности
Увеличение плотности состава сильно уменьшает скорость горения большинства составов. Особенно сильно сказывается влияние плотности на характер горения фотосмесей — 1кг фотосмесей в порошкообразном состоянии сгорает в течении десятых долей секунды, а время сгорания такого же количества смеси, спрессованного под давлением около 1000кгс/см2, выражается уже несколькими десятками секунд.
Зависимость скорости горения одного из осветительных составов от давления прессования выражается цифрами:
Увеличение давления прессования выше 3000кгс/см2 уже сравнительно мало отражается на плотности состава, а следовательно, и на скорости его горения.
Влияние плотности состава на скорость горения объясняется тем, что с увеличением плотности состава уменьшается возможность проникновения горячих газов внутрь состава по порам, и, тем самым, замедляется процесс прогрева и воспламенения более глубоких слоев. Следует заметить, что существуют малогазовые составы, увеличение плотности которых способствует передаче тепла в конденсированной фазе, и скорость горения их даже немного увеличивается с увеличением плотности. Установление зависимости скорости горения от плотности составов в значительной мере способствует выяснению в каждом отдельном случае вопроса о том, насколько большую роль при горении состава играют процессы, протекающие в конденсированной фазе.