Выбрать главу

Глава 1. Квантовые постулаты

А дальше — стоп.

А дальше, извини, стена.

1.1. Предмет квантовой механики

Пожалуй, первое, что нужно понять о квантовой механике, — это то, что к механике она имеет такое же отношение, как, скажем, к электродинамике, оптике, физике конденсированного состояния или высоких энергий. Квантовая механика, по существу, не описывает какой-то конкретный класс физических явлений; скорее, она обеспечивает универсальную теоретическую основу, которую можно использовать во всех областях физики, — так операционная система компьютера обеспечивает базу, на которой могут исполняться другие приложения. Употребление термина «квантовая механика» сложилось исторически, поскольку впервые квантовую основу удалось успешно применить при исследовании механического движения электронов в атоме. Более удачными терминами были бы «квантовая физика» или «квантовая теория».

Так что предмет квантовой механики (квантовой физики) глобален: она охватывает все физические явления во Вселенной. Однако применять квантовый подход имеет смысл только в случае очень маленьких (микроскопических) физических систем. Поведение более крупных систем очень хорошо аппроксимируется законами классической физики, намного более простыми и интуитивно понятными, по крайней мере для существ, эволюция которых проходила именно на этом масштабе величин.

Проиллюстрируем это примером. Вы, вероятно, слышали о принципе неопределенности Гейзенберга: ∆p∆x ≳ ℏ/2. То есть координату и импульс частицы невозможно измерить точно и одновременно: произведение неопределенностей составляет по крайней мере ℏ/2 ≈ 5 × 10−35 кг∙м2/с. Чтобы макроскопический объект с массой порядка килограмма достиг предела неопределенности, потребовалось бы измерить и координату объекта с точностью порядка ~ 10–17 м и скорость с точностью ~ 10–17 м/с. Это, разумеется, нереально, так что для всех практических целей мы можем просто забыть о принципе неопределенности и рассматривать координату и импульс как точные величины. Но для электрона массой ~ 10–30 кг произведение неопределенностей координаты и скорости составит около 5 × 10–5 м2/с, что вполне укладывается в экспериментально доступную точность измерений и должно приниматься во внимание.

Таким образом, предсказания квантовой теории отличаются от классических только для относительно простых, микроскопических объектов. Это объясняет, почему квантовая механика была открыта лишь в начале XX в. До того времени мы (сами представляющие собой макроскопические тела) имели дело исключительно с макроскопическими предметами. Но стоило нам изобрести инструменты, позволяющие достаточно глубоко проникать в микроскопический мир, как сразу же проявились квантовые явления.

Это пример принципа соответствия — философской максимы, согласно которой любая новая, более современная теория должна воспроизводить результаты более старых, устоявшихся теорий в тех областях, где эти теории были проверены. Вот еще один пример для иллюстрации этого принципа. Пока мы имели дело только с объектами, движущимися намного медленнее света, для описания окружающего нас мира достаточно было ньютоновой механики. Но стоило нам получить возможность наблюдать тела, которые движутся быстро (например, Земля вокруг Солнца в эксперименте Майкельсона — Морли), мы начали замечать несоответствия и вынуждены были разработать теорию относительности. Эта теория заметно отличается от ньютоновой механики — но тем не менее согласуется с ней в предельном случае низких скоростей. Было бы неразумно использовать специальную теорию относительности для описания, например, трансмиссии трактора, потому что классическое приближение в данном случае и вполне достаточное, и многократно более простое в применении. Аналогичным образом использование квантовой физики для описания макроскопических явлений в большинстве случаев было бы переусложненным и ненужным.

В классической физике мы имеем дело с величинами: скоростью полета камня 10 м/с, силой протекающего по электрическому контуру тока 0,2 А и т. д. Даже если мы не знаем точного значения какой-то физической величины, мы можем работать над улучшением нашей теории и эксперимента, чтобы предсказать и измерить эту величину со все более высокой точностью. Иными словами, классический мир бесконечно познаваем. В квантовой физике ситуация иная: некоторые знания (например, одновременные значения координаты и импульса) могут быть «священными»: их в принципе невозможно получить. И эту ситуацию уже нельзя описывать в терминах одних только величин. Вместо этого мы должны использовать концепцию квантового состояния физической системы. Как мы увидим, эта концепция содержит в себе границу между знанием, которое можно получить, и знанием, которое получить невозможно. Мы можем узнать точно, в каком состоянии находится система, но каждое состояние связано с фундаментальными ограничениями на точность, с которой физические величины могут быть определены.