Выбрать главу

Other regulations that are part of the regulative framework are those encompassing environmental regulations and regulations regarding noise and smell. Such regulations are commonly used to regulate the outcome of the design process: an installation should perform within the limits of allowed noise levels and emissions.

The relevant legislation and regulations make references to standards, which are therefore also part of the regulative framework. The organizations that formulate standards differ in different countries. Standards can be formulated by professional organizations, e.g., the American Society of Mechanical Engineers (ASME), industry, e.g., Regels in the Netherlands or by governmental institutions, e.g., British Standards. Standards are usually written rules for good design practice that, if used correctly, should protect the health and safety of persons and protect the environment. Standards are often prescriptive; they prescribe the use of certain hardware and calculations. In some countries, the application of a certain standards is required by law. In many states of the United States, the application of the ASME standards for pressure vessels and piping is required by law. In the EU, the use of EU standards during the design process of pipelines and pressure vessels leads to an assumption that the design conforms to the PED.

Despite the existence of an extensive regulative framework for pipes and pressurize vessels some elements of choice remain for the design engineers and for their customers. Due to the existence of a variety of safety standards for pipes and pressurize vessels the design engineers and their customers need to choose which of the standards to apply. Additionally the regulative framework does not cover all the safety choices that need to be made during the early phases of the design process. Where such choices are not mandated safety becomes the responsibility of the design engineers and their customers. For example, the design engineers in the case study mentioned that accident and load scenarios are not defined in the European standards and legislation for pipes and pressure vessels, even if the PED requires that a risk analysis is carried out. According to the engineers they usually referred to company standards for load and accident scenarios in such cases, or, if these are not available, discussed the issue with their customer or asked advice from the national notified body.

3.2 Bridge

Our second case concerned the preliminary construction design phase for an arched bridge over the Amsterdam-Rijncanal in Amsterdam. This case was an instance of normal design because the operational principle and normal configuration of arched bridges are well-known and were used when designing this bridge.

Several ethical questions about the safety and sustainability of the bridge were encountered by the engineers. The collapse of a bridge can cause deaths and injuries so decisions that influence the chances of the bridge collapsing are ethically relevant. Moreover, the construction industry is prone to accidents in which people are killed or seriously injured on the construction site, and the Netherlands is no exception. During the design process of a bridge decisions are made that influence construction site safety and risks that workers face during construction. Safety of the bridge covered several different aspects: safety during use, safety during construction, and safety for ships passing under the bridge.46

Most of the decisions concerning safety during use of the bridge were made using a regulative framework for bridge building that is based on the Dutch building decree. The building decree is detailed and contains prescriptions for, for example, strength calculations. The building decree refers to standards, for example, the Dutch standard for concrete and steel bridges (NEN 6723, 1995 and NEN 6788, 1995, respectively). Although the bridge regulative framework covers most of the decisions that need to be made concerning bridge safety and sustainability of the construction, it does not cover all decisions. An example of a safety issue that is not covered is misuse. In the case of the Amsterdam bridge people could climb onto the arches of the bridge because the arches were not very steep. The design engineers had to decide whether or not to do something to prevent people from climbing onto and walking on the bridge arches.

The regulative framework concerning safety during bridge construction is based on two European directives: 89/391/EC (working conditions) and 92/57/EC (health and safety on construction sites). The European directives are incorporated in

Dutch legislation in the working conditions decree (Arbeidsomstandighedenbesluit version February 2004). This decree requires a health and safety plan to be made for the construction of a bridge, and the design engineers, contractors and customers are held responsible for different parts of the health and safety plan. During the design phase, a design health and safety coordinator has to list and evaluate all risks. There are more substantial rules for working conditions but the design team did not know the exact content of these rules. They believed that compliance with these substantial rules was part of the responsibilities of the contractor, because the contractor is the employer at the building site. In fact, compliance to the rules is the responsibility of the employer and the employee in the working conditions decree. Thus there is a regulative framework for working conditions but this regulative framework was not used during the design process because the design engineers did not consider it part of their responsibility to address working condition issues arising during construction in any substantive way. The engineers only made the required list of risks during construction.

3.3 Lightweight Car

The DutchEVO, a very light, sustainable family city car was designed at Delft University of Technology. The empty weight of the car was set at a maximum of 400 kg. At present European family cars usually weigh about 1200 kg; even the two seater Smart has an empty mass of 720 kg. The design requirement to produce a sustainable car with an empty mass of less than 400 kg led to a radical design process. It was not certain whether the normal configuration for a car could be used; this was something that had to be decided on during the design process. Eventually, a standard engine was chosen but the floor structure, the side panels and the doors were very different from those of regular cars.

Ethical issues related to safety and sustainability were encountered by the design engineers. First, the light car will always have higher acceleration in a crash with a heavier car and is, therefore, less safe than the heavier car for people inside the car. Second, it is not possible to incorporate all usual active and passive safety systems in a car of 400 kg. With regard to car safety the tests performed by EuroNCAP47 are an important element of the regulative framework concerning cars in the EU. However, it was not possible to design a light car and still aim at very good results on the EuroNCAP crash tests. After an analysis of these crash tests, the design team decided that these crash tests lead to heavy cars that make people feel safe in their car. Cars performing well in EuroNCAP tests do not necessarily protect people well in all kinds of crashes, for example in crashes into trees or lampposts. Therefore the design team rejected the EuroNCAP crash tests. Third, the design team based part of their ideas about sustainability on the Brundtland definition of sustainable development, i.e., “development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (WCED, 1987, 43). However, it is unclear whether cars can be considered to be sustainable under this definition. The Brundtland definition is usually interpreted as referring to basic needs only, and the question is whether personal transportation is a basic need of people. Fourth, sustainability was operationalized mainly as using less energy by making the car lightweight but other operationalizations can also be defended, for example, that a sustainable car is a recyclable car. Fifth, the design team also wanted the car to be “emotionally sustainable”. By this they meant that people should get more satisfaction from the car than merely being able to use it to go from A to B. The team wanted to stimulate a caring relationship between car and owner, to promote long-term ownership rather than people ‘throwing away’ their car after a few years, and they wanted the car to be fun to drive. This can be at odds with the other part of sustainability because if people really like to drive a car, then they might use the car for distances that they would normally walk or cycle. This would increase energy use no matter how light the car is.

вернуться

46

We will not focus on obstructing ships on the canal, an elaboration of this can be found in Van Gorp (2005).

вернуться

47

EuroNCAP is a cooperative of different European consumer and governmental organizations.