В среднем и нижнем рядах на рисунке 1.7 показаны другие двумерные волны — посмотрите, как они выглядят. Как и у одномерных волн на рисунке 1.2, у них разные частоты и разные амплитуды. Волна в нижнем ряду с самой высокой частотой имеет самую низкую амплитуду (серый цвет), а волна в верхнем ряду с самой низкой частотой имеет самую высокую амплитуду (почти белый цвет). Впрочем, это лишь пример. Волна может иметь любую частоту при любой амплитуде.
Итак, можем сделать вывод: мелким деталям на картинке при ее описании по Фурье соответствуют высокочастотные волны. Именно они изменяются достаточно быстро. В жаргоне специалистов по компьютерной графике есть выражение «В этой сцене много высоких частот», означающее, что в ней много мелких деталей и резких стыков.
Последнее замечание о стыках касается существенного факта, который стоит знать. Его непросто понять, но он напрямую вытекает из математики Фурье: внезапный переход на резком стыке требует высоких частот; очень внезапные изменения требуют очень высоких частот.
Вот как я формулирую изюминку теории Фурье:
Любое визуальное поле — назовем его картинкой или узором — представляет собой сумму исключительно изящных синусоидальных волн, подобных тем, что получаются при развертывании идеальных цилиндров.
Визуальный мир в виде волн не более загадочен, чем мир звука, — или, скажем так, столь же чудесно загадочен. Геттисбергскую речь можно описать как интенсивность звукового давления в каждый момент выступления Авраама Линкольна или как сумму звуковых волн различных частот и амплитуд, получив при сложении то же самое. Фурье научил нас, что оба описания эквивалентны.
Ученые и инженеры любят предложенный Фурье подход, потому что, используя его, они могут решать проблемы, с которыми сложно справиться при пошаговом описании.
Вместо того чтобы учитывать тысячи и тысячи световых точек, мы основываемся на частотах и амплитудах волн интенсивности света, которые складываются в точки. Изменившее мир учение Фурье заключает, что эти два описания эквивалентны. Визуальное поле из точек, если продолжить аналогию с Розеттским камнем, — это древнегреческий язык, а эквивалентные ему волны Фурье — иероглифы. Компьютерщику легче читать иероглифы, чем древнегреческий, но, согласно идее Фурье, это одно и то же — Розеттский камень тому подтверждение.
Критики Фурье не верили в его правоту, но математическое доказательство сомнений не оставило. Это и есть магия идеи и сокрушительная сила математики. Сложение волн разных частот даст нам картину… чего угодно! Моего цветочного сада, страницы, которую вы сейчас читаете, или фотографии вашего ребенка. В этом и заключается великая и очень важная идея Фурье.
Жажда тепла
Благодаря Бонапарту Фурье удалось пережить Террор и даже войти в правящую элиту Франции — если, конечно, считать элитой губернатора отдаленной провинции. Увлечение революцией в молодости и личное знакомство с императором могли доставить немало проблем, когда король дважды возвращался во власть. Тем не менее Фурье пережил эту круговерть, как и времена Террора. Опираясь на свой солидный политический опыт, он даже умудрился почти 13 лет продержаться в должности префекта департамента Изер, и только последний год оказался рискованным.
В течение 12 лет — с апреля 1802-го по апрель 1814-го — Фурье с максимальной пользой проводил свое изгнание, зарекомендовав себя в качестве опытного губернатора. Ему удалось заключить соглашение с сорока коммунами об осушении огромного болота в Бургуэне, что стало настоящим политическим достижением, поскольку все предыдущие попытки договориться провалились. Он проложил новую дорогу из Гренобля в Турин. Он покупал книги для городской библиотеки, покровительствовал одаренным молодым людям, в первую очередь Шампольону, и работал над многотомным «Описанием Египта», которое увидело свет в 1810 году. Несмотря на сильную занятость, Фурье каким-то образом нашел время для развития волновой теории. К ней его привели не прослушивание концертов Моцарта или созерцание красот Альгамбры, а размышления о распространении тепла как о движении волн. Возможно, его théorie de la chaleur (теория тепла) — а вместе с ней и его великая гармоническая идея — были его хитрым планом по возвращению в Париж.