Они очень хорошо дополняют друг друга — эмоциональный Кармин и уравновешенный, рассудительный Бранский.
— Обычно при разработке новой теории имеется некоторое количество фактов, — добавляет Кармин, — на основе которых можно в принципе создать множество различных теорий. В конце концов какому из возможных вариантов отдать предпочтение — решается практикой. Но все же на первых порах ученый должен стать на какую-то точку зрения. И здесь обычно проявляется то, что называют интуицией исследователя. Если же разобраться глубже, то окажется, что в основе такой интуиции, как правило, лежат философские предпосылки.
— Практика обычно осуществляет отбор уже сформировавшихся теорий, но она не в силах помочь нам сделать выбор того или иного принципа из нескольких возможных. А без этого нельзя построить теорию, — заключает Бранский.
— Ну, а как, на ваш взгляд, — спрашиваю я, — способна ли философия заглядывать в будущее науки дальше, чем сами конкретные науки?
— Да, конечно, — убежденно говорит Бранский. — Так, например, согласно современной физической теории от распределения материи зависят метрические свойства пространства, но топология при этом одинакова. А с точки зрения философии возможно изменение также и топологических свойств. Это вытекает из последовательного проведения принципа изменчивости материи, изменчивости не только частных свойств, но и общих. Конечно, подобный прогноз не обязательно должен оказаться верным, но философия помогает его сделать.
— Физические соображения обычно накладывают более жесткие ограничения, — замечает Кармин. — С точки зрения философии картина получается более общей, а значит, появляется возможность и более далеких выводов. Кроме того, следует заметить, что философия более устойчива, чем конкретные научные теории, она медленнее меняет свой вид. Это объясняется тем, что философия является обобщением более высокого порядка. Вот почему философия способна как бы задавать схему познания.
Слушая их, я думаю о теоретиках — той особой категории исследователей природы, которые способны силой мысли и воображения строить модели явлений, известных и еще неизвестных.
У теоретиков (а космологи, как, впрочем, и философы, это и есть теоретики в самом чистом виде) — особая лаборатория. Нет в ней ни телескопов, ни радиотелескопов, ни ускорителей ядерных частиц, хотя, разумеется, и теоретики должны быть в курсе новейших наблюдений и экспериментов. Иначе не о чем будет теоретизировать. Но основной рабочий инструмент теоретика — вечная ручка и лист бумаги, а главное исследовательское оружие — размышления и… разговоры: споры, диспуты, обсуждения и просто обмен мнениями с другими исследователями при каждом удобном случае. И нередко именно в ходе таких бесед и рождаются новые оригинальные мысли, которые затем обрастают вычислениями и формулами, а иногда превращаются в новые гипотезы и теории.
И кто знает, может быть, те дискуссии и обсуждения, которые вели физики, астрофизики и философы тогда в Киеве, в зале заседаний симпозиума, и в перерывах, и в гостиничных номерах, и просто прохаживаясь по широкому солнечному Крещатику, может быть, они тоже послужат одним из толчков к разработке той теории Вселенной, которая уже стучится в двери и которую все мы ожидаем с волнением и нетерпением.
Неисчерпаемый, но познаваемый мир
Итак, вопрос о пространственно-временной бесконечности Вселенной чрезвычайно сложен и многогранен. И многое в его решении зависит от дальнейших исследований.
Но одна бесконечность не вызывает сомнений — «бесконечность вглубь и вширь» — неисчерпаемость материального мира.
С одной стороны, это бесконечность свойств и связей любого объекта — та самая неисчерпаемость, о которой говорил В. И. Ленин. А отсюда бесконечное разнообразие мира — бесконечное число взаимодействий, состояний, явлений и условий во Вселенной. Об этом говорит хотя бы современное состояние физики элементарных частиц.
В настоящее время науке известно четыре типа взаимодействий между микрообъектами. Прежде всего это так называемые сильные или ядерные взаимодействия — они удерживают протоны и нейтроны в ядрах атомов. Второй тип — электромагнитные взаимодействия, с которыми мы встречаемся внутри атомов, — они обеспечивают существование электронных оболочек. Третий тип — слабые взаимодействия, которые проявляются, в частности, при радиоактивном бета-распаде. И, наконец, гравитационные взаимодействия, отличающиеся своим универсальным характером и охватывающие все уровни материальных объектов от элементарных частиц до космических миров.