Выбрать главу

Требование не изменять и не подменять значения в ходе рассуждения является, конечно, совершенно справедливым. Но столь же очевидно, что оно не относится к законам логики.

Что касается законов противоречия и исключенного третьего, то и они в рамках «расширенной» логики приобретали ярко выраженный методологический уклон. Первый из этих законов обычно превращался в запрещение говорить одновременно «да» и «нет», утверждать и отрицать одно и то же об одном и том же предмете, рассматриваемом в одном и том же отношении. Второй подменялся требованием, чтобы решение каждого вопроса доводилось до полной определенности. Анализ следует считать завершенным только тогда, когда установлена истинность либо рассматриваемого положения, либо его отрицания.

Это — полезные советы, но никакие не законы логики.

В итоге можно сказать, что рассуждения «расширенной» логики об основных законах мышления затемняют и запутывают проблему логических законов.

Как ясно показала современная логика, законов логики бесконечное множество. Деление, их на основные и неосновные лишено ясных оснований.

Несостоятельна также подмена логических законов расплывчатыми методологическими советами. Никакого фундамента в виде короткого перечня основополагающих принципов у науки логики нет. В этом она не отличается от всех других научных дисциплин.

«Основных принципов», из которых выводилось бы или на которые опиралось бы все остальное содержание, нет ни у математики, ни у психологии, ни у любой иной науки. Иногда, правда, говорят о таких принципах или о фундаменте какой-то отрасли знания. В прошлом веке термин «основные принципы» нередко фигурировал в названиях научных книг. Но все это не должно пониматься буквально и прямолинейно.

Удивительно, что разговор об «основных принципах» логики иногда возникает даже в наше время.

Есть еще один предрассудок, культивировавшийся «расширенной» логикой и доживший до наших дней. Это обсуждение законов логики в полном отрыве их от всех иных ее важных тем и понятий и даже в изоляции их друг от друга.

При чтении старых книг по логике постепенно складывается впечатление разрозненности, необязательности и несвязанности рассматриваемых в них тем. Если удалить из старого учебника логики, скажем, раздел о законе исключенного третьего, на трактовке других законов это не скажется. Можно вообще устранить из такого учебника всякое упоминание об основных законах. И при этом все оставшееся не нужно будет даже перефразировать.

Логические законы интересны, конечно, и сами по себе. Но если они действительно являются важными элементами механизма мышления — а это, несомненно, так, — они должны быть неразрывно связаны с другими элементами этого механизма. И прежде всего с центральным понятием логики — понятием логического следования, и значит, с понятием доказательства.

Современная логика устанавливает такую связь.

Доказать утверждение — значит показать, что оно является, логическим следствием других утверждений, истинность которых уже установлена. Заключение логически следует из принятых посылок, если оно связано с ними логическим законом.

Без логического закона нет логического следования и нет самого доказательства.

ЕЩЕ ЗАКОНЫ

Вернемся, однако, к конкретным законам логики.

Законы двойного отрицания позволяют снимать и вводить такое отрицание. Их можно выразить так: если неверно, что не-А, то А; если А, то неверно, что не-А. Например, «Если неверно, что Фреге не знал закона снятия двойного отрицания, то Фреге знал этот закон», и наоборот.

Закон, носящий имя средневекового логика и философа монаха Дунса Скота, характеризует ложное высказывание. Смысл этого закона можно приблизительно передать так: из ложного утверждения вытекает какое угодно утверждение. Применительно к конкретным утверждениям это звучит так: если дважды два равно четыре, то если это не так, то вся математика ничего не стоит. В подобного рода рассуждениях есть несомненный привкус парадоксальности. Особенно заметным он становится, когда в качестве заключения берется явно ложное и совершенно не связанное с посылками высказывание. Например: если дважды два равно четыре, то если это не так, то Луна сделана из зеленого сыра. Явный парадокс! Не все описания логического следования принимают данный закон в качестве правомерного способа рассуждения. Построены, хотя только сравнительно недавно, такие теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми.