Выбрать главу
Самое простое управление

Попробуйте отвернуть водопроводный кран и пустить холодную воду. Поворачиваем ручку крана, и из него льется струя холодной воды. Разве мы потратили много сил и энергии на поворот крана? Вовсе нет, а струя тем не менее сильная. А если мы откроем ворота шлюза в плотине? Хлынет вода, она приведет в действие гидроагрегат, и тысячи киловатт электроэнергии поступят в единую энергетическую сеть страны. Разве это мы затратили столько энергии? Вовсе нет, мы просто управляли шлюзом.

Водитель тяжелого грузовика слегка нажимает педаль акселератора, и многотонная махина резко набирает скорость. Не водитель же ее двигает! Разумеется, двигатель, водитель только управляет. Вы сами можете придумать тысячи примеров непосредственного управления — управления в его простейшем виде.

В школьном курсе физики изучают устройство радиолампы — катод, анод, управляющая сетка… Стоп! Опять управление! Кстати, если английское слово valve — лампа перевести дословно, то получим «клапан» или «кран».

Электронный клапан — триод.

Чем же этот «кран» управляет? Не потоком воды, разумеется, а потоком электронов. Накаленный катод лампы испускает электроны. В любом проводнике, а хорошим проводником электрического тока являются металлы, имеется так называемый электронный газ — множество свободных отрицательных электрических зарядов — электронов. Атомы металла объединены в общей кристаллической структуре твердого тела, причем внешние электроны атомов, слабее всех связанные со своим «родным» ядром, получают возможность переходить от атома к атому, т. е. блуждать по всему металлу, как киплинговская кошка, которая «гуляла сама по себе». Но покинуть металл электроны не могут, потому что они несут отрицательный заряд. Заряд одного электрона весьма мал, е = 1,6-10-19 Кл. Тем не менее, если один электрон вырвется из металла, металл приобретет точно такой же по величине положительный заряд. Заряды противоположных знаков притягиваются (обратите внимание, как часто в жизни даже противоположные характеры тянутся друг к другу), и эти силы притяжения как бы втягивают электрон обратно в металл. Работа, которая требуется, чтобы удалить один электрон из металла, называется работой выхода. У разных металлов она разная, поэтому катод радиолампы стараются изготовить из металла с наименьшей работой выхода, например бария. Ну а если такой металл механически недостаточно прочен, его напыляют на более жесткий и тугоплавкий материал катода, обычно вольфрам. Когда катод разогревается током, проходящим по нити накала, до светло-красного каления, электроны в катоде двигаются быстрее. Они участвуют в тепловом движении — как бы сутолоке атомов, молекул, образующих нагретое вещество.

Пока вещество не расплавилось от нагрева, атомы остаются на своих местах в кристаллической решетке, они лишь колеблются все быстрее и быстрее. А вот электронам приходится туго. Как легкие мячики, их швыряют от атома к атому. И при достаточно сильном броске электрон приобретает кинетическую энергию, достаточную для совершения работы выхода. Таким образом, когда кинетическая энергия теплового движения электронов, пропорциональная температуре катода, становится сравнимой с работой выхода, происходит термоэлектронная эмиссия-излучение электронов нагретым катодом.

Термоэлектронная эмиссия.

Анод, заряженный положительно, притягивает и собирает вылетевшие из катода электроны. Несмотря на то, что в баллоне лампы глубокий вакуум, а катод и анод изолированы друг от друга, между этими электродами появляется электрический ток — направленное движение электронов, носителей заряда. Управляющая сетка, помещенная между катодом и анодом, служит тем самым «шлюзом», или «краном». Если сетка заряжена отрицательно по отношению к катоду, она отталкивает электроны, не пропуская их к аноду. По мере уменьшения отрицательного потенциала сетки все большая часть наиболее «шустрых» электронов (обладающих максимальной скоростью) проникает сквозь нее и попадает на анод. Анодный ток при этом увеличивается. При нулевом потенциале сетки почти все электроны достигают анода и анодный ток стремится к максимальному значению.

На сетке большое отрицательное напряжение.

Так действует электронная лампа — подобно вентилю, регулирующему поток воды из крана. Главным достоинством электронной лампы по сравнению с любыми другими вентилями и кранами является исключительно высокое быстродействие. Процесс включения и выключения анодного тока у современных ламп может длиться всего 10-9 с, или 1 нс. Благодаря столь высокому быстродействию электронные лампы пригодны для усиления и генерирования колебаний очень высокой частоты, а также для создания быстродействующих управляющих, логических и вычислительных устройств. Правда, в последних из перечисленных областей применения электронные лампы практически полностью вытеснены полупроводниковыми элементами. Тем не менее с помощью электронной лампы можно проиллюстрировать процесс управления, поэтому мы рассмотрели ее так подробно.

Напряжение на сетке близко у нулю.

Не слишком простое, зато гораздо более эффективное управление

«Капитан взмахнул платком, наколотым на острие шпаги, и канониры тут же поднесли горящие фитили к запальным отверстиям пушек. Борт фрегата окутался густым пороховым дымом, а когда дым рассеялся под порывом свежего северо-западного ветра, люди с преследуемого галиона увидели «Веселый Роджер», взвившийся к ноку бизань-рея фрегата». Нам сейчас неважно, откуда взят этот отрывок, обратите внимание лишь на то, что капитан фрегата сам не прикасался к фитилям, не стрелял из пушек, он только взмахнул платком. И этот взмах послужил сигналом к выстрелу.

Управлял ли капитан атакой? Безусловно! Но управление происходило путем сигнализации, что очень существенно. Сигнализация может быть и многозвенной. Например, взмах платка на шпаге капитана видели только командиры батарей, они устно отдавали приказ канонирам (тоже сигнал), а те уже стреляли.

Один из способов сигнализации.

«Пушки с пристани палят, кораблю пристать велят». Разумеется, вы знаете, откуда эта строка. Здесь все происходило наоборот — выстрел пушки послужил сигналом к повороту корабля и предпринятого ряда действий для его швартовки у пристани. Здесь ясно усматривается управление кораблем посредством сигнализации. Классический пример передачи сигналов — костры на сторожевых башнях, зажигавшиеся при приближении неприятеля. Этот примитивный световой телеграф был очень распространенным средством связи и в древней Осетии, и на Руси, и в Литве и во многих других местах. Существенным недостатком такого телеграфа было лишь то, что днем его эффективность резко падала. Днем приходилось переходить на другой вид сигналов: либо разводить густой дым, либо махать с башни уже не платками, а большими флагами.

Кстати, флажный семафор на флотах с успехом просуществовал долгое время. Скорость передачи сообщений с помощью костров на башнях была удивительно велика, например для передачи сообщения вдоль всего балийского побережья требовалось менее часа. Ну а где же здесь управление? Да на всех этапах процесса передачи: маленькая искра, высеченная кремнем, управляла зажиганием большого огня костра, свет одного костра управлял зажиганием другого, и, наконец, свет последнего костра управлял, говоря современным языком, мобилизацией войск.

После второй мировой войны сформировалась новая наука кибернетика, занимающаяся вопросами управления. Ее создателем был Норберт Винер. Слово «кибернетика» — древнее, оно встречалось еще у Платона и обозначало искусство управлять кораблем. Известный французский физик Ампер, именем которого названа единица силы тока, называл кибернетикой науку об управлении государством.