Выбрать главу

Это линейный процесс, и выполнение каждого шага должно следовать за выполнением предыдущего. Современные компьютеры используют программное или аппаратное обеспечение для создания многопоточных операций, но это делается только для того, чтобы разделить вычисления на подзадачи для повышения эффективности. Внутри каждой небольшой задачи по-прежнему соблюдаются основные принципы, разработанные фон Нейманом. Однако человеческий мозг представляет собой параллельную логическую систему высшего порядка, и у него нет определенного центра. Если какой-либо блок компьютера будет поврежден, весь компьютер перестанет функционировать. Но для человеческого мозга его отдельная клетка не представляет большого значения, и ее повреждение практически не влияет на вычислительную мощность всего мозга. Компьютеры являются цифровыми. Если не учитывать резервное копирование, каждая единица памяти хранит уникальные данные. А компьютер человеческого мозга статистический, и информация существует только в мозге в целом, а не записана в его определенной клетке.

Проиллюстрировать, как представлена информация, существующая в целом, мы можем на примере голограммы. Даже если та повреждена, до тех пор, пока хоть одна ее часть остается в своем первоначальном виде, изображение не будет потеряно. Более простой аналогией будет принцип формирования изображения выпуклыми линзами. Свет проходит через такую линзу, и на листе бумаги появляется перевернутое действительное изображение. Если закрыть половину линзы непрозрачным предметом, изображение не исчезнет наполовину, а станет более тусклым.

Если человеческую память сравнить с перевернутым действительным изображением, а выпуклую линзу – с человеческим мозгом, связь между памятью и мозгом станет ясна с первого взгляда. Память – это общая функция мозга, и она не выйдет из строя из-за его частичного повреждения.

Конечно, человеческий мозг имеет много функциональных областей, и повреждение некоторых из них может привести к потере определенных способностей. Это вызвано тем, что в мозге происходит «разделение труда». Если продолжить описание в оптических терминах, то наш мозг состоит из множества выпуклых линз. Они показывают различные сцены из внешнего мира, которые вместе образуют всеобъемлющую память. Как получается, что частично поврежденная нейронная сеть может оставаться пригодной для обработки конкретных ситуаций? Ответ кроется в важном понятии: обучении.

Перекрыв часть линзы, мы не заставим исчезнуть определенную часть изображения, но, если убрать всю линзу, изображение, конечно, исчезнет целиком.

Клетки нашего мозга умирают каждый день во всех его отделах, но мозг по-прежнему функционирует. Только когда наступает старение и разрушается слишком много клеток, «изображение» постепенно размывается. Для человека это нормально. Если часть мозга повреждается в результате несчастного случая, то функция, связанная с этой частью, также утрачивается.

Алгоритм нейронной сети имитирует биологический мозг и выполняет запоминание и операции по всему своему объему. Правда, нельзя сказать, что он работает как биологическая нейронная сеть, потому что секреты мозга еще не полностью разгаданы и остаются неизвестны аспекты совместной работы нейронов.

Но, если исходить из практики нейросетевых алгоритмов, у нас уже есть результаты, подобные AlphaGo. Таким образом, мы можем по крайней мере предположить, что этот алгоритм, даже грубая симуляция мозга, способен адаптироваться к конкретным ситуациям.

Что такое обучение? Неужели в нем кроется проблема? Мы учимся непрерывно с самого детства. Обучение – это социальное поведение, но в области искусственного интеллекта оно приобретает несколько иное значение. При машинном обучении эксперты стремятся обозначить входные данные и желаемый результат так, чтобы нейронная сеть могла развиться в определенном направлении и сформировать специальную структуру, работающую с проблемами определенного типа. Этот процесс аналогичен изменениям в нейронных сетях живых организмов под влиянием обучения.

Как AlphaGo изучает го – вопрос слишком узкоспециальный, и мы не будем останавливаться на нем подробно. Но об одном факте упомянуть необходимо: то, как эта программа играет в го, фундаментально отличается от того, как играют люди. Другими словами, в рамках ограничений правил го она нашла новый способ играть, и он гораздо эффективнее человеческого. Страшно то, что люди не могут понять ее стратегию. Причина этого, вероятно, кроется в том, что аппаратное обеспечение AlphaGo на самом деле намного превосходит человеческий мозг, что дает программе огромное преимущество и позволяет просчитывать ситуации, которые люди учесть не могут. Обновленная версия AlphaGo называется AlphaGo Zero. Почему Zero – «ноль»? Потому что эта нейронная сеть не использовала накопленный людьми опыт и начала играть в го с нуля. Первая партия походила на баловство ребенка: одна сторона поля черная, другая белая, почти вся доска заполнена. Однако AlphaGo Zero быстро превратилась в мастера го и превзошла версию-предшественницу, и, естественно, сейчас ни один человек не может с ней тягаться. Это доказательство того, что для искусственного интеллекта, основанного на алгоритмах нейронных сетей, достаточно лишь установить определенные правила, и он разовьется и превзойдет человеческий интеллект. По крайней мере, это верно в случае игровой симуляции.