(when (> (get-universal-time) *some-future-date*)
(return))
(format t "Waiting~%")
(sleep 60))
The extended LOOP is quite a different beast. It's distinguished by the use of certain loop keywords that implement a special-purpose language for expressing looping idioms. It's worth noting that not all Lispers love the extended LOOP language. At least one of Common Lisp's original designers hated it. LOOP's detractors complain that its syntax is totally un-Lispy (in other words, not enough parentheses). LOOP's fans counter that that's the point: complicated looping constructs are hard enough to understand without wrapping them up in DO's cryptic syntax. It's better, they say, to have a slightly more verbose syntax that gives you some clues what the heck is going on.
For instance, here's an idiomatic DO loop that collects the numbers from 1 to 10 into a list:
(do ((nums nil) (i 1 (1+ i)))
((> i 10) (nreverse nums))
(push i nums)) ==> (1 2 3 4 5 6 7 8 9 10)
A seasoned Lisper won't have any trouble understanding that code—it's just a matter of understanding the basic form of a DO loop and recognizing the PUSH/NREVERSE idiom for building up a list. But it's not exactly transparent. The LOOP version, on the other hand, is almost understandable as an English sentence.
(loop for i from 1 to 10 collecting i) ==> (1 2 3 4 5 6 7 8 9 10)
The following are some more examples of simple uses of LOOP. This sums the first ten squares:
(loop for x from 1 to 10 summing (expt x 2)) ==> 385
This counts the number of vowels in a string:
(loop for x across "the quick brown fox jumps over the lazy dog"
counting (find x "aeiou")) ==> 11
This computes the eleventh Fibonacci number, similar to the DO loop used earlier:
(loop for i below 10
and a = 0 then b
and b = 1 then (+ b a)
finally (return a))
The symbols across, and, below, collecting, counting, finally, for, from, summing, then, and to are some of the loop keywords whose presence identifies these as instances of the extended LOOP.[92]
I'll save the details of LOOP for Chapter 22, but it's worth noting here as another example of the way macros can be used to extend the base language. While LOOP provides its own language for expressing looping constructs, it doesn't cut you off from the rest of Lisp. The loop keywords are parsed according to loop's grammar, but the rest of the code in a LOOP is regular Lisp code.
And it's worth pointing out one more time that while the LOOP macro is quite a bit more complicated than macros such as WHEN or UNLESS, it is just another macro. If it hadn't been included in the standard library, you could implement it yourself or get a third-party library that does.
With that I'll conclude our tour of the basic control-construct macros. Now you're ready to take a closer look at how to define your own macros.
8. Macros: Defining Your Own
Now it's time to start writing your own macros. The standard macros I covered in the previous chapter hint at some of the things you can do with macros, but that's just the beginning. Common Lisp doesn't support macros so every Lisp programmer can create their own variants of standard control constructs any more than C supports functions so every C programmer can write trivial variants of the functions in the C standard library. Macros are part of the language to allow you to create abstractions on top of the core language and standard library that move you closer toward being able to directly express the things you want to express.
Perhaps the biggest barrier to a proper understanding of macros is, ironically, that they're so well integrated into the language. In many ways they seem like just a funny kind of function—they're written in Lisp, they take arguments and return results, and they allow you to abstract away distracting details. Yet despite these many similarities, macros operate at a different level than functions and create a totally different kind of abstraction.
Once you understand the difference between macros and functions, the tight integration of macros in the language will be a huge benefit. But in the meantime, it's a frequent source of confusion for new Lispers. The following story, while not true in a historical or technical sense, tries to alleviate the confusion by giving you a way to think about how macros work.
The Story of Mac: A Just-So Story
Once upon a time, long ago, there was a company of Lisp programmers. It was so long ago, in fact, that Lisp had no macros. Anything that couldn't be defined with a function or done with a special operator had to be written in full every time, which was rather a drag. Unfortunately, the programmers in this company—though brilliant—were also quite lazy. Often in the middle of their programs—when the tedium of writing a bunch of code got to be too much—they would instead write a note describing the code they needed to write at that place in the program. Even more unfortunately, because they were lazy, the programmers also hated to go back and actually write the code described by the notes. Soon the company had a big stack of programs that nobody could run because they were full of notes about code that still needed to be written.
In desperation, the big bosses hired a junior programmer, Mac, whose job was to find the notes, write the required code, and insert it into the program in place of the notes. Mac never ran the programs—they weren't done yet, of course, so he couldn't. But even if they had been completed, Mac wouldn't have known what inputs to feed them. So he just wrote his code based on the contents of the notes and sent it back to the original programmer.
With Mac's help, all the programs were soon completed, and the company made a ton of money selling them—so much money that the company could double the size of its programming staff. But for some reason no one thought to hire anyone to help Mac; soon he was single- handedly assisting several dozen programmers. To avoid spending all his time searching for notes in source code, Mac made a small modification to the compiler the programmers used. Thereafter, whenever the compiler hit a note, it would e-mail him the note and wait for him to e-mail back the replacement code. Unfortunately, even with this change, Mac had a hard time keeping up with the programmers. He worked as carefully as he could, but sometimes— especially when the notes weren't clear—he would make mistakes.
The programmers noticed, however, that the more precisely they wrote their notes, the more likely it was that Mac would send back correct code. One day, one of the programmers, having a hard time describing in words the code he wanted, included in one of his notes a Lisp program that would generate the code he wanted. That was fine by Mac; he just ran the program and sent the result to the compiler.
The next innovation came when a programmer put a note at the top of one of his programs containing a function definition and a comment that said, "Mac, don't write any code here, but keep this function for later; I'm going to use it in some of my other notes." Other notes in the same program said things such as, "Mac, replace this note with the result of running that other function with the symbols x and y as arguments."
92
LOOP doesn't care what package the symbols are from. When the LOOP macro parses its body, it considers any appropriately named symbols equivalent. You could even use true keywords if you wanted—:for, :across, and so on—because they also have the correct name. But most folks just use plain symbols. Because the loop keywords are used only as syntactic markers, it doesn't matter if they're used for other purposes—as function or variable names.