Выбрать главу

Де Бройль представил себе, что электрон, словно некое умозрительное подобие звучащей ноты, связан со своей волной. Что ему уютно только на такой орбите — строчке, где укладывается целое число связанных с ним волн. И если ему суждено перескочить на другую орбиту, он выберет такую, где тоже укладывается целое число волн. У каждого вещества есть свой набор нотных строчек — орбит. Это они определяют, какие именно фотоны способны рождать электроны, перескакивая с орбиты на орбиту в атоме данного элемента.

Так де Бройль связал между собой модель атома, придуманную Бором, с особыми волнами, управляющими поведением электронов в атоме. Расчет, произведенный де Бройлем, привел его к боровским орбитам. Квантовые числа Бора обрели физический смысл.

Внутреннее строение атома все более прояснялось. Оно четко проявлялось и в расположении цветных линии оптического спектра, и в значениях квантовых чисел.

Для того чтобы избежать недоразумений, следует напомнить, что в дальнейшем квантовая физика была вынуждена отказаться от представления движения электронов при помощи определенных орбит. В соответствии с этим изменился и смысл, вкладываемый в квантовые числа, введенные Бором и Зоммерфельдом. Но эти квантовые числа остались необходимыми и в новой квантовой теории, пришедшей на смену квантовой механике Бора — Зоммерфельда.

Метод квантования, который Зоммерфельд назвал колдовством, прочно вошел в обиход физики. Но приемы колдовского ритуала постепенно совершенствовались. Этим колдовством в совершенстве овладел Эдмунд Клифтон Стонер, талантливый физик-теоретик, окончивший Кембриджский университет. Он стал в 1937 году членом Лондонского королевского общества. Круг его научных интересов — проблемы магнетизма, атомной структуры веществ, квантовая статистика. В 1925 году он ввел в науку подразделение электронных оболочек атома на подоболочки. Путь к этому начался так.

Стонер сопоставлял спектральные линии в оптических спектрах атомов со всем набором возможных сочетаний трех квантовых чисел, введенных Бором и Зоммерфельдом перед ним распахнулись двери, ведущие в «кухню» природы, где по вполне определенным рецептам «приготовлялись» те или иные атомы.

Стонер сумел проследить, как из спектров атомов с необходимостью вытекает порядок распределения электронов орбитам, начиная от простейшего атома водорода, имеющего один электрон, к сложным многоэлектронным атомам. В 1924 году в статье «Распределение электронов по атомным уровням» он показал соответствие между рентгеновскими спектрами элементов и квантовыми числами Бора и Зоммерфельда.

Стонер пишет: «Электроны могут входить в группу (группами он называл электронные оболочки) до тех пор, пока не будут заняты все возможные (для этой оболочки) орбиты, и тогда атом будет обладать симметричной структурой.

Работа Стонера послужила в определенном смысле завершением работы Менделеева по выявлению связи физических и химических свойств атомов с их взаимным расположением в периодической системе элементов. Запомним: химические свойства элементов определяются количеством электронов во внешней оболочке атома. Внутренние оболочки иногда влияют на химические свойства, но гораздо слабее, чем электроны внешней оболочки.

Теперь в каждой из клеток периодической системы элементов можно было просто нарисовать схему расположения электронных орбит, которые группируются в оболочки, соответствующие периодам таблицы Менделеева. Вопрос о том, как устроены атомы и как их устройство связано с их свойствами, казался выясненным окончательно.

За кулисами периодического закона

Истинным ученым ни один шаг не кажется последним. Прозрачная ясность схемы Стонера неизбежно породила вопрос: почему заполнение электронных оболочек происходит именно так, а не иначе? Что стоит за периодическим законом, на чем основан этот закон?

Уже в марте 1925 года немецкий физик-теоретик Вольфганг Паули ответил на этот вопрос. Ответил введением постулата, ставшего затем одним из фундаментов квантовой физики. Этот постулат известен теперь как «принцип запрета» Паули.

Незадолго до того, анализируя с квантовой точки зрения влияние внешнего магнитного поля на спектр атомов, Паули пришел к любопытному выводу. Он решил, что все известные результаты такого воздействия (открытые голландцем Питером Зееманом, получившим в 1902 году Нобелевскую премию), включая воздействие сильных магнитных полей, можно объяснить. Для этого надо допустить ситуацию, которую нельзя описать классически. Как видно, электрон обладает неизвестной до того своеобразной двузначностью квантовых свойств.