Выбрать главу

Электрические силовые линии начинаются и кончаются на зарядах.

Магнитные силовые линии нигде не начинаются и не кончаются.

Такая несимметрия, несправедливость, если хотите, может легко поранить чью-нибудь чувствительную душу. Кроме того, если вникнуть глубже в смысл уравнений Максвелла, получится, что электричество вполне может обойтись без магнетизма, а магнетизм без электричества - нет!

Фактически уравнения Максвелла полностью сводят магнетизм к электричеству. После того как Ампер продемонстрировал две спирали с током, "притягивающиеся как магниты", магнетизм как таковой, казалось, перестал существовать.

Две великие силы природы оказались одной - электричеством. Вся тысячелетняя история этих двух явлений, казалось, восставала против такой несправедливости.

Именно отсутствие магнетизма как самостоятельного явления и утверждается уравнениями Максвелла. Магнетизма нет, есть одно электричество.

Электричество имеет источник - электрический заряд.

Магнетизм имеет источником лишь электричество.

Это смущает.

Это наводит на крамольные мысли.

К тому же - явная математическая несимметрия уравнений, которые, как говорил Герц, живут самостоятельной жизнью и иногда кажутся даже умнее человека, создавшего их.

Но классическая теория электромагнетизма не содержит ничего, что оправдывало бы, по существу, такое "неравенство" электричества и магнетизма.

В 1931 году кембриджский профессор Поль Адриен Морис Дирак, знаменитый физик-теоретик, много сил отдавший созданию квантовой электродинамики, увлекся задачей, не содержит ли квантовая теория нечто оправдывающее преимущество электричества перед магнетизмом?

Такого преимущества не оказалось. Как классическая, так и квантовая электродинамика "не возражали" против введения в уравнения, для того, чтобы сделать их полностью симметричными, "магнитных зарядов", еще не известных науке.

Такие магнитные заряды, или, как их назвал Дирак, "монополи", должны были быть полным магнитным эквивалентом зарядов электрических.

Они могли быть отделены друг от друга, другими словами, могли бы порознь существовать "северные" и "южные" магнитные заряды. Эта "безумная" идея странным образом воскрешала воззрения XIII века, опровергнутые Гильбертом, доказавшим, что нельзя получить в магните отдельно северный и южный полюсы.

Как магнитные явления возникают при движении электрических зарядов, так и электрические явления могли бы стать следствием движения зарядов магнитных.

Как и электроны, монополи могли бы испускать и поглощать электромагнитное излучение, например свет. И наоборот, если очень энергичные фотоны могут создавать пару: отрицательно заряженный электрон и положительно заряженный позитрон (кстати говоря, тоже предсказанный Дираком и вскоре обнаруженный), они же могут рождать и пару: северный и южный монополи.

Как мы упомянули, идея магнитных монополей была высказана Дираком вместе с идеей о существовании "положительного электрона" - позитрона. И то и другое предположения были одинаково дики для физиков. Взять хотя бы идею о положительном электроне. Ясно, что когда-нибудь положительный электрон встретится с "настоящим", отрицательным электроном, в результате чего произойдет аннигиляция - превращение в электромагнитную энергию двух элементарных частиц. В конце концов такие процессы должны были бы привести к уничтожению и мира, и физиков, изобретающих подобные теории.

Однако и одно и другое продолжают благополучно существовать. Стало быть, позитронов не бывает?

Такая или примерно такая точка зрения существовала до того момента, когда американский физик К. Д. Андерсон в 1932 году заметил в камере Вильсона след частицы, по всем данным идентичной электрону, однако отклоняющейся в магнитном поле в "неправильную" сторону.

Это был предсказанный Дираком позитрон.

Многие физики были раздосадованы - не один видел уже такие следы у себя, в камере Вильсона, но не смог по той или иной причине отождествить частицу, оставившую его, с позитроном. В числе таких, к сожалению, оказался и известный советский физик Д. В. Скобельцын, первым применивший к исследованию космических лучей камеру Вильсона, помещенную в магнитное поле. Именно метод Скобельцына использовал Андерсон, когда открыл позитрон.

После такого триумфа предсказаний Дирака доверие к его монополям резко возросло. Исследователи ринулись на поиски новых частиц. Раз монополи не противоречат ни классической, ни квантовой электродинамике, раз уж они предсказаны, раз они могут существовать, значит, они существовать должны.

Но где? И как?

И вообще, что известно о монополе?

Что искать?

Как ни странно, Дирак из самых общих соображений смог предсказать и основные свойства монополя. Прежде всего, оказалось, что заряд монополя не может принимать любое значение - он должен быть квантованным, точно так же, как и электрический заряд.

Величина этого заряда оказалась опять-таки связанной с "магическим числом" 137 (в квантовой физике есть два "магических числа" - 137 и 208; их происхождения и физического смысла никто не знает, но числа с поразительным упорством, снова и снова всплывают в уравнениях и расчетах). Если заряд электрона равен , то заряд монополя должен быть равен .

Отсюда можно вычислить и силу взаимодействия между двумя магнитными зарядами - она в раза больше, чем сила взаимодействия электронов.

Можно вычислить и массу монополя - он довольно тяжел - по крайней мере в три раза тяжелее протона, причем число "сортов" монололей может быть очень велико - точно так же, как и число электрически заряженных частиц. Другими словами, мир магнитных частиц должен быть не менее разнообразен, чем мир электрически заряженных частиц.

Как могут создаться монополи? Логично предположить, что они образуются примерно так же, как пара электрон - позитрон, например, в результате сильных столкновений между другими частицами21. Таким образом, монополи могут быть найдены в продуктах взаимодействия разгоняемых в ускорителях частиц. Как их выделить? Очевидно, рядом с камерой, регистрирующей взаимодействия, нужно поставить очень мощный магнит, который смог бы "вытянуть" монополи из области взаимодействия. По расчетам, поле магнита должно быть около 60 тысяч гаусс, примерно в 120 тысяч раз больше магнитного поля Земли.

В 1962 году эксперимент по обнаружению монополей был проведен в Брукхейвене, США, где был построен самый крупный тогда в мире ускоритель на 30 Бэв (30 миллиардов электрон-вольт!), на выходе которого был установлен мощный магнит с полем, превышающим 60 тысяч эрстед.

Шесть миллионов миллиардов протонов было послано в мишень. Ни одного монополя. Хотя теоретически должны были бы быть по крайней мере те, масса которых не превышает трех протонных.

Или - их нет вовсе.

Или - их масса больше. Последние данные - монополь не легче десяти протонов.

С пуском в СССР крупнейшего в мире синхротрона на 70 Бэв надежды найти монополи в продуктах реакций ускоренных частиц резко возросли. Создаются и очень мощные магниты, много мощнее тех, что были уже использованы в Брукхейвене. В физическом институте Академии наук СССР (ФИАН им. П. Н. Лебедева) под руководством академика Прохорова пущен магнит на 200 тысяч эрстед.

А красноярские физики замахнулись построить магнит с полем миллион эрстед. Невообразимая цифра! Этот магнит будет потреблять более половины электроэнергии, которую намечалось иметь во всей Советской России после выполнения плана ГОЭЛРО.

Итак, построены сверхмощные ускорители. Построены и строятся сверхмощные магниты. Что ж, будем ждать вестей об открытии (или "закрытии") монополей.

А пока их ищут в космосе научные космические спутники-лаборатории. Дело в том, что среди космических частиц встречаются частицы со столь грандиозной энергией, что получить ее на Земле в ускорителях физики не предполагают даже в самых голубых своих планах.

Интересный способ поимки монополей придумал японский физик Гото. Он утверждает, что наиболее легко извлечь их из... метеоритов.