Физик Чженьнин Янг, лауреат Нобелевской премии, рассказывает такую историю, иллюстрирующую современный аспект отношений физиков и математиков на интеллектуальном уровне.
Однажды вечером в город приехали несколько человек. Им нужно было постирать свою одежду, и они пошли по улицам города в надежде отыскать прачечную. Наконец, им попалось здание с вывеской на окне: «Прачечная». Один из людей спросил: «Вы не могли бы постирать нашу одежду?» Хозяин ответил ему: «Нет, здесь у нас не прачечная». «Как же?», — спрашивает посетитель, — «На вашем окне даже висит вывеска». «Именно вывески мы тут и делаем», — прозвучал ответ. Это в чем-то характерно для математиков. Они делают вывески, которые, как они надеются, подойдут на все случаи. Однако и физики сделали многое в математике.
В некоторых наиболее конкретных частях математики — скажем, в теории вероятностей — физики вроде Эйнштейна и Смолу-ховского открыли определенные новые области даже прежде математиков. Идеи теории информации, энтропии информации и ее роли в общем континууме исходили от физиков, таких как Лео Сциллард, и инженера Клода Шеннона, а вовсе не «чистых» математиков, которые могли и должны были сделать это намного раньше. Понятие энтропии, свойства распределения, первоначально было введено в термодинамику, а потом приложено к физическим объектам. Но Сциллард (в очень общем виде) и Шеннон смогли определить это понятие и для общих математических систем. Правда Норберт Винер также принимал участие в его зарождении, а также замечательные математики, как Андрей Колмогоров, впоследствии развили, обобщили и приложили это понятие к чисто математическим задачам.
Некоторые математики прошлого, например, Пуанкаре, обладали немалыми познаниями в физике. Гильберт, у которого, казалось, не было особого понимания физики, написал очень важные работы о методах и логике этой науки. Фон Нейман также знал очень многое из физики, но ему, я бы сказал, не было свойственно врожденное понимание и осознание пользы эксперимента. Его интересовали основы квантовой механики, покуда к ним можно было применять математику. А для физики аксиоматический подход к ее теориям имеет то же значение, что грамматика для языка. Математическая ясность для физики может и не быть концептуально решающей.
С другой стороны, чистая математика тоже служила источником появления многих инструментальных средств теоретической физики, а иногда и некоторых ранних ее идей. Общие неевклидовы геометрии, в которых Риман пророческим образом усмотрел будущую их важность для физики, предшествовали теории относительности, так же как квантовую теорию предупредили определение и изучение операторов в гильбертовом пространстве. А слово «спектр», к примеру, употреблялось математиками задолго до того, как кто-то мог даже мечтать об использовании спектрального представления операторов гильбертова пространства для объяснения реального спектра света, излучаемого атомами.
Я нередко задавался вопросом, почему математики не классифицировали специальную теорию относительности, не представили ее в виде различных типов «специальных относительностей» (я не имею ввиду уже существующую общую теорию относительности). Лично я уверен в существовании других «относительностей» в общих пространствах, хотя едва ли какие-нибудь попытки в этом отношении уже предпринимались математиками. Написано огромное количество работ по метрическим пространствам, обобщающим обыкновенную геометрию, в которых отсутствует измерение времени. Ведь если объединить пространство и время, то математикам нечего будет делать! Топологи продолжают хранить верность пространственноподобным пространствам, они не изучали идеи, обобщающие четырехмерное пространство-время. И это мне очень удивительно, как с позиций эпистемологии, так и психологии. (На ум приходит только одна работа, написанная ван Данцигом, в которой он философски размышляет о понятии временной топологии; он говорит, что оно могло бы описываться соленоидальной переменной. Мне эта идея нравится, но все же следует изучать пространства с временным параметром более интенсивно и с большим воображением.)
Всем известно, что специальная теория относительности постулирует и строится исключительно на том, что скорость света всегда неизменна, независимо от движения источника или наблюдателя. Из одного этого постулата следует все, включая знаменитую формулу E = mc2. Выражаясь математическим языком, инвариантность конусов света приводит к группе преобразований Лоренца. Тогда математик мог бы, просто ради математического развлечения, принять в качестве постулата, что, скажем, частота остается постоянной или что инвариантен какой-нибудь другой класс простых физических отношений. Путем логических рассуждений можно было бы посмотреть, каковы были бы последствия такой картины «нереальной» вселенной.