Мне всегда больше нравилось пытаться открыть новые возможности, чем просто держаться намеченных линий рассуждения или выполнять конкретные вычисления. У некоторых математиков это качество доминирует над всеми другими. Но надо сказать, что открытие новых возможностей куда более трудное занятие по сравнению с проведением математических вычислений, и оно не может продолжаться слишком долго.
То, насколько плодотворна работа отдельной личности, разумеется, обуславливается тем, что ей под силу, и это, по всей вероятности, сужает поле ее деятельности. За собой я замечал привычку «вертеть» задачу и так и эдак, отыскивая те моменты, в которых может крыться затруднение. Некоторые математики приходят в уныние, когда не остается ни трудностей, ни препятствий, о которых можно было бы переживать. Нет нужды говорить, что одни при этом задействуют большее воображение, чем другие. Так, Поль Эрдеш постоянно находится в состоянии сосредоточенности, но как правило, на тех рассуждениях, которые либо уже были кем-то начаты, либо были связаны с тем, о чем он ранее уже размышлял. У него нет привычки что-нибудь «стирать» из своей памяти как с магнитофонной пленки, чтобы начать что-то заново.
У Банаха была одна излюбленная польская пословица: «Надежда — удел глупцов». И все-таки полезно испытывать надежду и верить, что удача принесет успех. В то же время упорный поиск законченных решений математических задач — занятие менее благодарное, чем неоднократные попытки, которые в результате приводят к неполным решениям или, во всяком случае, дают опыт. Это сравнимо с исследованием неизвестной местности, в которой для того, чтобы открыть новые земли, совсем не обязательно сразу доходить до самого конца тропы или взбираться на все вершины.
Самое главное в творческой науке — не отступать. Если вы оптимист, то наверняка захотите сделать больше попыток, нежели этого захочет пессимист. То же самое происходит в игре. Например, в шахматах. Действительно, хороший шахматист склонен верить (иногда ошибочно), что он находится в лучшем положении, чем его соперник. Это, конечно же, поддерживает игру и сдерживает усталость, которую вызывают сомнения в себе. Физические и умственные ресурсы решающе важны и в шахматах, и в творческой научной работе. Только в последнем случае избежать ошибок легче, так как всегда можно вернуться назад и начать размышление сначала; в шахматах же пересматривать уже сделанные ходы не позволяется.
Умение концентрироваться и отвлекаться от окружающей обстановки приобретается молодыми с большей естественностью. Математиком можно стать будучи очень молодым, даже подростком. Для математиков-европейцев раннее развитие характерно даже в большей степени, чем для математиков-американцев, так как европейское среднее образование на несколько лет опережает более теоретическое образование в Соединенных Штатах. Нет ничего необычного и в том, что математики добиваются своих лучших результатов в очень раннем возрасте. Правда, бывают и исключения, например, Вейерштрасс, который был учителем в средней школе, достиг наивысших результатов в возрасте сорока лет.
А Норман Левинсон не так давно доказал очень красивую теорему, и ему при этом было шестьдесят один или шестьдесят два года.
В двадцать пять лет я получил несколько результатов в теории меры, которые в скором времени стали широко известными. Они представляли собой решения некоторых любопытных задач теории множеств, которые ранее пытались решить Хаусдорф, Банах, Куратовский и другие. Спустя годы эти задачи теории меры приобрели значение в связи с работой Геделя и недавней работой Пола Коэна. Я также занимался исследованиями в топологии, теории групп, и теории вероятностей, однако с самого начала я не специализировался в какой-то конкретной области. Много занимаясь математикой, я никогда не считал себя математиком и только. Возможно, это одна из причин, по которой позднее я стал заниматься и другими науками.
В 1934 году международная обстановка становилась все более угрожающей. В Германии к власти пришел Гитлер, и его влияние косвенно ощущалось и в Польше, выражаясь в участившихся вспышках национализма, массовых выступлениях правых экстремистов и демонстрациях антисемитов.
Не могу утверждать, что тогда я видел в этом предзнаменования грядущих событий, однако смутно я чувствовал, что, если я хочу сам зарабатывать себе на жизнь, а не продолжать неизвестно сколько еще времени принимать помощь отца, мне следовало ехать за границу. В течение многих лет мой дядя Кэрол Ауэрбах твердил мне: «Изучай иностранные языки!» Другой мой дядя, Майкл Улам, который был архитектором, убеждал меня попробовать сделать карьеру за границей. Сам же я, не осознавая истинного положения дел в Европе, испытывал соблазн устроить продолжительную поездку за границу. Причиной этого было, главным образом, мое желание познакомиться с другими математиками, обсудить с ними какие-нибудь задачи и, учитывая мою крайнюю самоуверенность, попытаться впечатлить мир своими новыми достижениями. Мои родители согласились оплатить эту поездку.