Выбрать главу

В общем случае для этого требуется знать значения измеримых параметров Р и q , проецированных на ортогональные оси координат. Но соотношение указанных параметров здесь иное, нежели в классической механике, поскольку есть запрет на их совместное точное измерение - согласно принципу неопределённостей Гейзенберга. Тем не менее в квантовой теории существуют специфические средства для получения замкнутого в информационном отношении описания поведения квантовых систем. Так, широко используется описание, основанное на понятии "комплексная волновая функция", которое выработано в рамках концепции волновой природы материи и с помощью которого даётся полное описание системы.

В итоге надо сказать, что классическое моделирование механических систем основано на идее единства мира, на качественном сохранении его законов. На этом же базируется теория относительности - при всех её специфических отличиях от классической теории. В этих вариантах механики описание движения систем не содержит представления о внутреннем импульсе и источнике изменений. Здесь мы имеем дело с системами, которые не определяют собственного начала движения и его окончания. Описательные модели таких систем строятся на предпосылке, что система может начинать движение из любого прошлого состояния и способна пробегать все свои состояния на шкале времени бесконечно, если не возникает внешних препятствий. Однако в квантовой механике уже вводится идея спонтанных изменений, а также используется представление о качественных преобразованиях состояний систем путём квантования.

1.3 МОДЕЛИРОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ

Теоретическая термодинамика рассматривает системы, приспособленные для переноса тепла от источника тепла к холодильнику с помощью рабочего тела. Такие системы способны выполнять некоторую полезную работу. В общем случае процессы в подобной системе являются обратимыми. Главное условие обратимости - сохранение равновесного состояния всех тел, принимающих участие в термодинамическом процессе. Здесь предполагается неизменной связь между параметрами состояния, т.е. квазистатичность, сохранение определённой константы в соотношениях термодинамических параметров. Весьма важную форму этой константы даёт, например, закон Менделеева-Клапейрона: PV = GRT / 9/.

Весьма общим результатом теоретической термодинамики является выработка представления о том, что состояние термодинамической системы зависит как от внешних, так и внутренних условий. Это обстоятельство учитывается в понятиях о свободной и скрытой теплоте, а также о внешней работе и внутренней энергии термодинамической системы. С представлением о внутренней энергии в термодинамике тесно связано понятие о самопроизвольном процессе, который осуществляется как переход теплоты от более нагретого тела к менее нагретому. Для противоположного перехода нужна энергетическая компенсация /10/.

Надо заметить, что специфика системного моделирования в термодинамике существенно связана с доказательством возможности замещения (эквивалентности) основных процессов, протекающих в системе (превращение тепла в работу и переход тепла от более нагретого тела к менее нагретому, которые представляются как эквивалентные). Так, в работах Р. Клаузиуса было показано, что для обратимых процессов эквивалентность устанавливается из соотношения

а для необратимых процессов

Р. Клаузиус обосновал также необходимость и всеобщность идеи циклов в описании термодинамических превращений. С помощью этой идеи улавливается одно из базовых проявлений сложных систем - циклический характер протекающих в них процессов. Там, где предполагается разрыв замкнутой цепи, всегда обнаруживается компенсирующее направление процесса. Термодинамика даёт полное отражение указанной компенсации для неживых систем. Этой цели служат первое и второе начала термодинамики, задающие матрицу энергоэнтропийного описания внутрисистемных преобразований. Надо отметить, что подобный способ моделирующего описания был разработан в недрах классической термодинамики, которая имеет предметом равновесные системы. Это - термостатика. Она занята отысканием функциональных определителей для замкнутых систем, таких как внутренняя энергия, энтальпия, энтропия. Напротив, современная неклассическая термодинамика имеет дело с неравновесными системами. Для последних характерна определённая необратимость, эффект которой невозможно свести к нулю. Методы неклассической термодинамики основаны на использовании неизвестных для классического подхода понятий, таких как "поток энтропии", "скорость возрастания энтропии" и др. Опора на такие понятия дала возможность вывести термодинамические уравнения движения, выявить принципы симметрии, которые обусловливают протекание термодинамических процессов в системе. Тем самым вводился в научную методологию язык обобщенного типологического описания систем.