Выбрать главу

Однако в природе это соотношение обычно составляет 1:3 в пользу синонимичных мутаций. Это соотношение в десять раз меньше того, которого следовало бы ожидать при случайном накоплении мутаций. Лишь небольшая доля возникающих несинонимичных мутаций остается в популяции. Какой же фактор так сильно ограничивает распространение несинонимичных мутаций?

Ответ только один: естественный отбор. Такое изменение соотношения является прекрасным доказательством действия так называемого очищающего отбора, который поддерживает «чистоту» аминокислотных последовательностей, избавляя белки от мутаций, которые могли бы повлиять на их функцию.

Влияние очищающего естественного отбора можно обнаружить в последовательностях большинства генов, но наиболее ярко оно выражено в бессмертных генах, сохранившихся во всех царствах живых организмов. Например, многие белки, участвующие в трансляции мРНК, являются общими у всех видов. Если взглянуть на фрагмент хотя бы одного из этих белков у представителей архей, бактерий, растений, грибов и животных, можно увидеть значительное сходство, не утраченное за 2 млрд лет (рис. 3.3; для простоты все аминокислоты обозначены буквами). Обратите внимание, что в ходе эволюции у разных видов сохранилось 14 одинаковых аминокислотных остатков. Эти 14 букв являются бессмертными.

Рис. 3.3. Бессмертные гены. Короткий фрагмент последовательности белка (так называемого фактора элонгации 1-а), обнаруженного во всех царствах жизни. Некоторые аминокислоты (выделены серым цветом,) не изменились на протяжении миллиардов лет. Рисунок Джейми Кэрролл.

Однако, если мы сравним последовательности ДНК, кодирующие этот фрагмент в данных организмах, мы обнаружим, что они различаются в значительно большей степени. Например, анализ соответствующих генов людей и томатов показывает, что они совпадают лишь по 65 из 78 позиций (83 %), тогда как белки идентичны по 25 из 26 позиций (96 %). Причина большего сходства белковых последовательностей по сравнению с последовательностями ДНК заключается в наличии в ДНК 12 синонимичных замен, то есть замен, которым разрешено накапливаться.

Эволюция генов в условиях очищающего отбора — своеобразный «бег на месте». Это означает, что основания могут изменяться, но смысла это не меняет. Рассмотрим, например, триплет TTA, кодирующий аминокислоту лейцин. Этот триплет может измениться двумя разными способами, но при этом по-прежнему будет кодировать лейцин, а мутированные триплеты могут измениться еще раз, но все еще будут кодировать лейцин.

Большинство аминокислот кодируются по меньшей мере двумя разными триплетами, а некоторые аминокислоты — тремя и большим числом триплетов (в случае лейцина их шесть). Таким образом, триплеты в последовательностях ДНК могут «бегать» (изменяться), однако естественный отбор постоянно следит за ними и не позволяет им «убежать» настолько далеко, чтобы это привело к изменению последовательности или функции белка.

Предотвращение слишком сильных изменений происходит за счет того, что естественный отбор благоприятствует сохранению одной конкретной последовательности по сравнению с вариантами, в которых изменена одна или несколько аминокислот. Если какой-то вариант белка функционирует хуже остальных, пусть даже на 0,001 %, со временем естественный отбор (по тем математическим законам, о которых мы говорили в предыдущей главе) вычищает этот вариант из большой популяции. Эти чистки настолько эффективны, что отдельные «буквы» в «тексте» белка могут сохраняться в неизменном виде практически у всех видов организмов. Представьте себе: бессмертные буквы в белковых последовательностях бесконечно, снова и снова подвергаются мутациям в множестве особей, у миллионов видов, на протяжении миллиардов лет — но все эти мутации вновь и вновь отметаются естественным отбором.

Выравнивание белковых последовательностей (рис. 3.3) показывает, что существуют ограничения в выборе аминокислотных остатков для данного белка и что белковые последовательности разных видов различаются лишь по нескольким позициям. Синонимичные мутации допускаются гораздо чаще, чем несинонимичные. Я показал это на фрагменте лишь одного гена, но я мог бы привести в пример тысячи генов, включая 500 бессмертных генов и многие-многие другие гены из любой группы организмов. Строгое сохранение большинства позиций в белковых последовательностях при синонимичной эволюции соответствующих последовательностей ДНК и изменение лишь ограниченного числа аминокислотных позиций — это важнейшая закономерность эволюционного процесса на уровне ДНК.