Выбрать главу

T0= Тн+ v2/2cp,

где Тн — температура набегающего воздуха, v — скорость полёта тела, cp — удельная теплоёмкость газа при постоянном давлении. Так, например, при полёте сверхзвукового самолёта с утроенной скоростью звука (около 1 км/ сек) температура торможения составляет около 400° C. А при входе космического аппарата в атмосферу Земли с 1-й космической скоростью (8,1 км/сек), температура торможения достигает 8000 °С. Если в первом случае при достаточно длительном полёте температура обшивки самолёта достигнет значений, близких к температуре торможения, то во втором случае поверхность космического аппарата неминуемо начнёт разрушаться из-за неспособности материалов выдерживать столь высокие температуры». [4] Автор был не совсем точен, материал при указанной температуре начнет испаряться! Тело исчезнет при температуре меньше 8000 °С. Правильно было бы говорить о температуре плазмы.

Судя по тексту публикации бывшего медицинского работника в военном госпитале Оберта Германа, он не понимал о чем идет речь. Автор называл температуру торможения, температуру «газа в окрестности движущегося тела» (БСЭ), температурой тела: «Таким образом, искомая температура значительно превышает для ракет 5000°. Если же необходимо предотвратить такое сильное нагревание поверхности, следует подвести достаточное количество охлаждающего вещества, чтобы оно могло отнять тепло Q»… При скорости 10000 м/сек эта температура, безусловно, превышает 15000°. Вероятно, она даже превышает 20000°». [3] Немецкий гений не мог додуматься до очень простой мысли о том, что при названных температурах тело существовать не сможет. Оно просто исчезнет и превратиться в раскаленный газ. Вероятно, что немецкий инженер просто не знал о температурах кипения и температуре испарения железа, базальтов, других металлов. Хотя, с другой стороны, автор Герман Юлиус Оберт в своей публикации вскользь упоминает о парах металла: «Здесь, конечно, предполагается, что закон Стефана-Больцмана выполняется для паров металлов при θ°». [3]

Но в тексте все равно автор использует термин «температуры тела», «температура поверхности объекта». Герман Оберт в своей публикации поставил задачу определения температуры неохлажденной поверхности космического объекта, в частности космического аппарата. В начале этой главы он сразу указал, что означают условные обозначения: При таких величинах температуры до 20000° никакое тело сохраниться не может.

h — толщина воздушного слоя, необходимого для торможения.

p — параметр траектории полета ракеты для межпланетных полетов.

p — давление воздуха после сжатия.

p0 — давление воздуха до сжатия.

r — радиус Земли.

s — высота над поверхностью Земли.

t — кажущаяся температура воздуха, обусловленная движением.

v — скорость.

H — 7300 — 7400 м

L — сопротивление воздуха.

Q — количество подведенного тепла.

S — количество тепла, отданного излучением.

T — абсолютная температура.

T1 — абсолютная температура после сжатия.

T0 — абсолютная температура до сжатия.

β — барометрическое давление.

βS — давление воздуха на высоте S.

θ — абсолютная температура тела, нагретого вследствие трения в воздухе.

k — отношение между удельными теплоемкостями при постоянном давлении и постоянном объеме.

μ — масса 1 м³ в технических единицах.

ρ — радиус-вектор (проведенный к центру Земли).

α — постоянная излучения в законе Стефана-Больцмана.

τ — истинная температура воздуха.