Сейчас, на основании открытий нейрофизиологии XIX-XX веков мы можем попытаться развить и прокомментировать гипотезу М. Холла, заполнив в ней смысловые «пробелы» современными разработками и выводами.
Напомню: скандальность гипотезы заключалась в том, что она (по сути) уравнивала меж собой такие позиции, как, к примеру, запах самки и страницу Шекспира, кожный зуд и математическую формулу. По гипотезе Холла — все это разносильные, но вполне равноправные раздражители, вызывающие рефлекторные ответы той или иной степени сложности. Но не более того.
(Следуя логике Холла, этот рефлекторный ответ может быть разным, но это зависит не от свойств раздражателя, а исключительно от силы раздражения.)
Но и спустя 150 лет не возникло никаких подтвержденных данных о том, что нейрон хоть как-то «познает природу» раздражения или вообще ею «интересуется».
Академический статус получила гипотеза, согласно которой «сигналы в нейронах высоко стереотипны и одинаковы для всех животных» (NichollsJ. G., Martin А. /?., Wallace В. G., Fuchs Р. A. From Neuron to Brain, 2006), а синаптические связи имеют идентичный механизм у всех живых существ.
(Механизм сокращения-расширения синаптической щели, движения митохондрии, поведения синаптических пузырьков при нейронной связи, происходящей в ганглии саранчи, — практически подобен тому же механизму в мозгу рыси, акулы или человека, хотя характеристики раздражителей для трех перечисленных видов радикально разнятся.)
В1930 году фундаментальное исследования К. Геррика {С. Herrick), подтвержденное (в известной степени), откорректированное и дополненное изысканиями А. И. Карамяна (1969), позволило вычертить очень понятную эволюционную этапность истории мозга. Рассмотрим эти две разработки (в режиме сведения).
Некий «предпервый» этап — это мозг бесчерепных и круглоротых, который был, судя по всему, эквипотенциален, не имел почти никакой оформленной структурности, и хотя к середине кембрийского периода у круглоротых намечается «морфологическое обособление отделов мозга, все же элементы эквипотенциального функционирования сохраняются и у них» (Карамян).
Непосредственно сам первый этап — это мозг ихтиопсидного типа, (поперечноротые и костистые рыбы, отчасти амфибии), в котором таламус и конечный мозг еще не имеют понятных отграничений друг от друга, «не оказывают влияния на каудальные отделы мозга» (Геррик), но этот мозг уже готов обеспечивать моторные и рефлекторные акты через «мозжечково-тектальную интеграцию» (Карамян).
Второй этап — зауропсидный тип организации мозга (амфибии, рептилии, птицы). Мозг четко сегментируется, обозначаются стриарные образования, начатки коры, появляются структуры, управляющие дистантными рецепторами, четко генерирующие локомоцию и другие специализированные акты.
Третий этап — маммальный тип организации мозга (все млекопитающие). «Характеризуется наличием весьма дифференцированных неоталамических и неокортикальных структур» (Геррик).
(Сведение произведено по: Herrick С. Brains of Rats and Men: A Survey of the Origin and Biological Significance of the Cerebral Cortex (1930) и Карамян А. И. Методологические основы эволюционной нейрофизиологии (1969)).
Этапность, как видим, в первую очередь демонстрирует неумолимое стремление к возрастанию структурированности мозга, к локализации функций, т.е. к их «разнесению» по нарождающимся новым анатомическим формациям. По всей вероятности, именно это, через улучшение «картинки» сознания, позволяло максимизировать силу раздражений, «входящих» через рецепторику, а дифференциация, позволяющая избегать смешения раздражений, усугубляла эффект каждого отдельного возбудителя или их группы.
Ceterum, это было известно еще в 1907 году, когда В. Е. Ларионов описал объединения нейронов в коре, заметив, что «топографическое объединение отдельных элементов создает преимущества, так как при этом укорачивается путь передачи возбуждения между отдельными нейронами, входящими во вновь возникший функциональный ансамбль» (Ларионов В. О тонком строении головного мозга: вопрос о нейронах и отдельных центрах, 1907).
В известном смысле доказательным фактом является общность возбудителей для нейронов на всех трех основных этапах развития мозга. Она была многократно подтверждена и является даже locus communis, но малоизвестными остались любопытные и красноречивые эксперименты А. Крейндлера (1960), искусственно вызывавшего припадки эпилепсии у рыб, амфибий, рептилий и птиц при помощи тонко дозированного электротока, а также пикротоксина и пентаметилентетразола. Во всех случаях провокация припадков производилась через наиболее понятные (стандартные) механизмы возникновения эпилепсии, а сами припадки в общем соответствовали классическому определению: «Эпилептический припадок представляет собой состояние, вызванное чрезмерно сильным зарядом нейронов в ЦНС» (Пенфилд).