Выбрать главу

Наша Солнечная система сформировалась около 5 млрд лет назад в результате коллапса гигантского газопылевого облака. Он был вызван ударной волной от вспышки сверхновой звезды. Доказательством могут служить крошечные алмазы, вкрапленные в метеориты вместе с тяжелыми изотопами железа, которые могли сформироваться только во время вспышки сверхновой. Обычно размер коллапсирующего пылевого облака, из которого формируется звезда размером с наше Солнце, – 1–3 световых года в диаметре, что многократно превышает размер Солнечной системы. Чтобы образовались звезды большей массы, облако должно достигать десятков световых лет в диаметре. Но и эти гигантские размеры ничто по сравнению с протяженностью Галактики – примерно 100 000 световых лет.

Лишь небольшая часть пылевого облака – облачное ядро – в итоге становится планетарной системой. После коллапса, приведшего к образованию Солнечной системы, бóльшая часть массы ядра облака сместилась в центр, где образовалось Солнце (этот процесс описывался в предыдущей главе). Лишь ничтожно малая часть массы, порядка 0,1 % от массы Солнца, досталась планетам Солнечной системы.

Все основные планеты Солнечной системы обращаются вокруг Солнца в пределах почти плоского диска, который называется эклиптикой. Считается, что Солнечная система приняла дискообразную форму благодаря медленному вращению и постепенному сжатию космического облака, из которого она образовалась. По мере сжатия скорость вращения облака возрастала – так, фигурист, выполняющий «винт», ускоряется, прижимая к груди распростертые руки. Облако вращалось все быстрее и быстрее, но одновременно росла и центробежная сила, «разносящая» материю к краям экватора, перпендикулярно оси вращения. Однако центробежная сила не действует вдоль оси вращения. Поэтому облако продолжало сокращаться вдоль оси, но сохраняло свою форму перпендикулярно ей, постепенно образуя диск. Из остатков вещества, которые сохранились в плоскости диска и продолжали обращаться вокруг Солнца, сформировались планеты Солнечной системы.

Однако, как ни привлекательна гипотеза о пыльном космическом облаке, «сплющенном» в диск благодаря вращению, она приводит к серьезным парадоксам. Если бы такое облако действительно вело себя, как фигурист, выполняющий «винт», то Солнечная система сегодня вращалась бы намного быстрее и под воздействием центробежной силы не сжалась бы до нынешнего, весьма небольшого, размера. Даже если бы изначально облако вращалось очень медленно, сжатие должно было охватить огромные расстояния, и потому наше облако уже нельзя сравнить с обычным фигуристом, который в «винте» подтягивает ничем не занятые руки к корпусу, – скорее это фигурист, у которого на руках повисли стопудовые гири, а сами руки при этом раскинуты на многие километры.

Отдаленные туманности, похожие на облако, из которого родилась Солнечная система, вращаются крайне медленно. Энергия вращения, особенно кинетическая, обычно составляет несколько процентов от общей энергии облака и по природе своей является преимущественно гравитационной – полученной в результате сжатия облака, разогревающей газ и запускающей термоядерные реакции водорода и формирование звезд. Если бы гигантское облако сжалось до размеров Солнечной системы, даже такая небольшая энергия вращения заставила бы Солнце вращаться намного быстрее, чем мы наблюдаем сейчас. Сама Солнечная система вращалась бы гораздо быстрее, чем позволяют нынешние орбиты наших планет. Тем не менее центробежная сила не позволила бы Солнечной системе сжаться до ее нынешнего размера, и Юпитер, расположенный в пять раз дальше от Солнца, чем Земля, оказался бы за пределами орбиты Нептуна, который отстоит от Солнца в 30 раз дальше, чем Земля. Каким‑то образом Солнечная система в процессе сжатия потеряла энергию вращательного движения или, что не совсем то же самое, «момент импульса». Это подводит нас к парадоксу момента импульса в физике Солнечной системы, парадокса, который до сих пор не объяснен. Его объясняют разными влияниями – от магнитных полей до турбулентности, «отнимающей» момент импульса Солнца и выталкивающей его из Солнечной системы, но ни одна из догадок не утвердилась в качестве основной. В любом случае Солнечная система смогла (непонятно каким образом) решить проблему с моментом импульса, и протосолнечное облако сжалось в хорошенький диск размером с Солнечную систему, что в итоге позволило Юпитеру двигаться по его текущей орбите. Это первоначальное сжатие было очень быстрым (в геологической шкале времени) – вероятно, около 100 000 лет.

полную версию книги