Выбрать главу

 52  53  54  55  56  57  58  59  60  61

 62  63  64  65  66  67  68  69  70  71

 72  73  74  75  76  77  78  79  80  81

 82  83  84  85  86  87  88  89  90  91

 92  93  94  95  96  97  98  99 100 101

102 103 104 105 106 107 108 109 110 111

Теперь, начиная с 2 и сохраняя при этом саму двойку в неприкосновенности, уберем каждое второе число после 2.

  2   3   .   5   .   7   .   9   .  11

  .  13   .  15   .  17   .  19   .  21

  .  23   .  25   .  27   .  29   .  31

  .  33   .  35   .  37   .  39   .  41

  .  43   .  45   .  47   .  49   .  51

  .  53   .  55   .  57   .  59   .  61

  .  63   .  65   .  67   .  69   .  71

  .  73   .  75   .  77   .  79   .  81

  .  83   .  85   .  87   .  89   .  91

  .  93   .  95   .  97   .  99   . 101

  . 103   . 105   . 107   . 109   . 111

Первое выжившее число после двойки — это 3. Сохраняя теперь 3 в неприкосновенности, удалим каждое третье число после 3, если оно еще не удалено. Получим

  2   3   .   5   .   7   .   .   .  11

  .  13   .   .   .  17   .  19   .   .

  .  23   .  25   .   .   .  29   .  31

  .   .   .  35   .  37   .   .   .  41

  .  43   .   .   .  47   .  49   .   .

  .  53   .  55   .   .   .  59   .  61

  .   .   .  65   .  67   .   .   .  71

  .  73   .   .   .  77   .  79   .   .

  .  83   .  85   .   .   .  89   .  91

  .   .   .  95   .  97   .   .   . 101

  . 103   .   .   . 107   . 109   . 111

Первое выжившее число после тройки — это 5. Сохраняя теперь 5 в неприкосновенности, удалим каждое пятое число после 5, если оно еще не удалено. Получим

  2   3   .   5   .   7   .   .   .  11

  .  13   .   .   .  17   .  19   .   .

  .  23   .   .   .   .   .  29   .  31

  .   .   .   .   .  37   .   .   .  41

  .  43   .   .   .  47   .  49   .   .

  .  53   .   .   .   .   .  59   .  61

  .   .   .   .   .  67   .   .   .  71

  .  73   .   .   .  77   .  79   .   .

  .  83   .   .   .   .   .  89   .  91

  .   .   .   .   .  97   .   .   . 101

  . 103   .   .   . 107   . 109   . 111

Первое выжившее число — это 7. Следующий шаг состоит в том, чтобы, сохраняя теперь 7 в неприкосновенности, удалить каждое седьмое число после 7, если его еще не удалили до этого. Первое число, которое выживает после этого, — 11. И так далее.

Если проводить эту процедуру бесконечно, то оставшимися числами будут все простые числа. В этом и состоит «решето Эратосфена». Если остановиться прямо перед тем, как пришло время обрабатывать простое число p — другими словами, прямо перед тем, как надо будет удалять каждое p-е число, если оно еще не было удалено, — то мы получим все простые числа, меньшие p2. Поскольку выше мы остановились прямо перед обработкой семерки, у нас имеются все простые до 72, т.е. 49. После этого числа остаются и не простые числа, такие как 77.

III.

Решето Эратосфена — вещь достаточно простая. И ему уже 2230 лет. Как же оно перенесет нас в середину XIX века, к глубоким результатам в теории функций? А вот как.

Я собираюсь повторить только что проведенную процедуру. (Именно по этой причине мы разобрали ее столь тщательно.) Но на этот раз я применю ее к дзета-функции Римана, которую мы определили в конце главы 5. Дзета-функция от некоторого аргумента s, большего единицы, записывается как

Стоит заметить, что такая форма записи предполагает выписывание всех положительных целых чисел — в точности как в начале наших действий с решетом Эратосфена (с тем только исключением, что на сей раз включена 1).

Сделаем такое: умножим обе части равенства на . Получим

где мы пользовались 7-м правилом действий со степенями (которое говорит, например, что 2s умножить на 7s равно 14s). А теперь вычтем второе из этих выражений из первого. В одну из левых частей входит ζ(s) с множителем 1, а в другую — та же ζ(s) с множителем . Вычитая, получаем

Вычитание устранило из бесконечной суммы все члены с четными числами. Остались только члены, в которые входят нечетные числа.

Вспоминая решето Эратосфена, умножим теперь обе части порченного равенства на , руководствуясь тем, что 3 — это первое выжившее число в правой части:

Теперь вычтем это выражение из того, которое мы получили ранее. При вычитании левых частей будем рассматривать  как неделимую штуку, — просто как некоторое число (каковым оно, конечно, и является при любом заданном s). Вся эта штука входит в левую часть одного выражения с множителем 1, а в левую часть другого — с множителем