Выбрать главу

Таблица 9.1. Значения функции S(x) = 1 + x + x2 + x3….

Вот и все, что можно извлечь из бесконечной суммы. График этой функции показан на рисунке 9.1; на этом графике у функции нет вообще никаких значений к западу от −1 и к востоку от 1. Используя профессиональную терминологию, можно сказать, что область определения этой функции заключена строго между −1 и 1.

Рисунок 9.1. Функция S(x) = 1 + x + x2 + x3….

III.

Но смотрите, нашу сумму

S(x) = 1 + x + x2 + x3 + x4 + x5 + …

можно переписать в таком виде:

S(x) = 1 + x(1 + x + x2 + x3 + x4 + …).

Ряд в скобках здесь равен просто S(x): каждый член, встречающийся в одном, встречается также и в другом из двух выписанных выше рядов, а это и означает, что они совпадают.

Другими словами, S(x) = 1 + xS(x). Перенося самый правый член в левую часть, получаем равенство S(x) − xS(x) = 1, или, другими словами, (1 − x)S(x) = 1. Следовательно, S(x) = 1/(1 − x). Возможно ли, чтобы за нашей бесконечной суммой скрывалась столь простая функция, как 1/(1 − x)? Может ли равенство

1/(1 − x) = 1 + x + x2 + x3 + x4 + x5 + x6 + … (9.2)

оказаться верным?

Без сомнения, может. Если, например, x = 1/2, то 1/(1 − x) равняется 1/(1 − 1/2), что есть 2. Если x = 0, то 1/(1 − x) равно 1/(1 − 0), что есть 1. Если x = −1/2, то 1/(1 − x) равняется 1/(1 − (−1/2)), т.е. 1:11/2 что есть 2/3. Если x = 1/3, то 1/(1 − x) равняется 1/(1 − 1/3) т.е. 1:2/3, что есть 11/2. Если x = −1/3, то 1/(1 − x) равняется 1/(1 − (−1/3)), т.е. 1:11/3, что есть 3/4. Все сходится. Для аргументов −1/2, −1/3, 0, 1/3, 1/2, при которых мы знаем значения функции, значения бесконечного ряда S(x) такие же, как и значения функции 1/(1 − x). Похоже, что этот ряд и эта функция — одно и то же.

Рисунок 9.2. Функция 1/(1 − x).

Но они не одно и то же, поскольку у них различные области определения, как это видно из рисунков 9.1 и 9.2. S(x) имеет значения только между −1 и 1, не включая границы; функция же 1/(1 − x) имеет значения везде, за исключением точки x = 1. Если x = 2, то ее значение равно 1/(1 − 2), то есть −1. Если x = 10, то значение равно 1/(1 − 10), то есть −1/9. Если x = −2, то значение равно 1/(1 − (−2)), то есть 1/3. Можно нарисовать график функции 1/(1 − x). Как видно, он совпадает с предыдущим графиком в промежутке между −1 и 1, но имеет еще и значения к западу от −1 (включая саму −1) и к востоку от 1.

Мораль здесь в том, что бесконечный ряд может определять только часть функции; или, используя подобающие математические термины, бесконечный ряд может определять функцию только на части ее области определения. Остальная часть функции может где-то прятаться, ожидая, пока ее не вытащат на свет с помощью фокуса типа того, что мы применили к S(x).

IV.

Это приводит к очевидному вопросу: а не обстоит ли дело подобным же образом и с дзета-функцией? Не случилось ли так, что бесконечная сумма, которую мы использовали для дзета-функции, — выражение (9.1) — описывает только часть этой функции? И у этой функции есть что-то еще, что нам только предстоит открыть? Может ли область определения дзета-функции

оказаться больше, чем просто «все числа, большие 1»?

Конечно может. Иначе зачем бы мы тут стали влезать во все эти подробности? Да, дзета-функция имеет значения при аргументах, меньших 1. На самом деле, как и функция 1/(1 − x), она имеет значения при всех числах за единственным исключением x = 1.