Выбрать главу

Сейчас подходящий момент, чтобы привести график дзета-функции, который продемонстрировал бы все ее свойства в широком интервале значений. К сожалению, это невозможно. Как уже упоминалось, кроме как для простейших функций, обычно нет хорошего и надежного способа показать функцию во всем ее великолепии. Близкое знакомство с функцией требует времени, терпения и тщательного изучения. Можно, однако, изобразить дзета-функцию по кускам. На рисунках с 9.3 по 9.10 показаны значения ζ(s) для некоторых аргументов, находящихся слева от s = 1, хотя для этого потребовалось выбрать свой собственный масштаб на каждом графике. Понять, где мы находимся, можно, руководствуясь подписанными аргументами (на горизонтальной оси) и значениями (на вертикальной оси). При обозначении масштаба m указывает на миллион, tr на триллион, mtr обозначает миллион триллионов, a btr — миллиард триллионов.

Коротко говоря, когда s лишь немного меньше единицы (рисунок 9.3), значения функции очень большие по величине и отрицательные — как если бы при движении на запад при пересечении линии s = 1 значения внезапно переметнулись из бесконечности в минус бесконечность. Если продолжить путешествие по рисунку 9.3 — т.е. устремлять s ближе и ближе к нулю, — то подъем вверх радикально замедляется. Когда s равно нулю, ζ(s) равна −1/2. При s = −2 кривая пересекает ось s, т.е. ζ(s) равна нулю.

Рисунок 9.3.

Затем (мы по-прежнему двигаемся на запад, добравшись теперь до рисунка 9.4) график взбирается на относительно скромную высоту (в действительности до 0,009159890…), а после этого поворачивает вниз и снова пересекает ось при s = −4. График попадает в неглубокую впадину (−0,003986441…), а после нее снова взбирается вверх и пересекает ось при s = −6. Еще один невысокий пик (0,004194…), спуск до пересечения с осью при = −8 и далее в несколько более глубокую впадину (−0,007850880…), затем пересечение с осью в точке −10, после чего уже довольно заметный пик (0,022730748…), пересечение с осью при s = −12, впадина поглубже (−0,093717308…), пересечение с осью при s = −14 и т.д.

Рисунок 9.4.

Дзета-функция равна нулю при каждом отрицательном четном числе, а по мере продвижения на восток (рисунки от 9.5 до 9.10) последовательные пики и впадины быстро делаются все более и более значительными. Последняя показанная впадина расположена при s = −49.587622654, а глубина ее составляет около 305 507 128 402 512 980 000 000. Сами видите, как нелегко изобразить дзета-функцию на одном графике.

Рисунок 9.5.

Рисунок 9.6.

Рисунок 9.7.

Рисунок 9.8.

Рисунок 9.9.

Рисунок 9.10.

V.

Ho как я получил все эти значения ζ(s) для s, меньших 1? Мы уже видели, что бесконечный ряд из выражения (9.1) для этого непригоден. А что пригодно? Если бы ради спасения своей жизни мне пришлось вычислить значение ζ(−7,5), как бы я к этому подступился?

Я не могу объяснить этого в полной мере, потому что такое объяснение требует слишком значительного погружения в математический анализ. Но я попробую передать общую идею. Сначала определим некоторую новую функцию, используя бесконечный ряд, слегка отличный от ряда в выражении (9.1). Это η-функция; η (читается «эта») — седьмая буква греческого алфавита. Определим η-функцию как

Грубая прикидка подсказывает, что у этой функции перспективы сходимости лучше, чем у выражения (9.1). Вместо непрестанного прибавления чисел здесь мы по очереди то прибавляем, то вычитаем, так что каждое следующее число до некоторой степени сокращает вклад предыдущего. Так оно и выходит. Математики в состоянии доказать — хотя здесь мы этим заниматься не будем, — что этот новый бесконечный ряд сходится всегда, когда s больше нуля. Это существенное улучшение по сравнению с выражением (9.1), которое сходится, только когда s больше единицы.

Но какая нам от всего этого польза в отношении дзета-функции? Для начала заметим, что в силу элементарных алгебраических правил A − B + C − D + E − F + G − H + … равно (A + B + C + D + E + F + G + H + …) минус 2×(B + D + F + H + …). Поэтому функцию η(s) можно переписать как