Выбрать главу

Итак, достаточно один раз впустить букву i в порядок вещей, как она породит целый новый класс чисел вида 2 + 5i, −1 − i, 47,242 − 101,958i, √2 + πi — все возможные a + bi с вообще любыми вещественными a и b. Они называются комплексными числами. Каждое комплексное число имеет две части: вещественную и мнимую. Вещественная часть комплексного числа a + bi — это a, а мнимая — это b.

Как и в случае с другими матрешками N, Z, Q и R, числа, принадлежащие к одной из внутренних матрешек, являются привилегированными комплексными числами. Натуральное число 257, например, есть комплексное число 257 + 0i; вещественное число √7 есть комплексное число √7 + 0i. Вещественное число — это просто комплексное число с нулевой мнимой частью.

А как насчет комплексных чисел с нулевой вещественной частью? Они называются (чисто) мнимыми числами. Примеры чисто мнимых чисел: 2i, −1479i, πi, 0,0000000577i. Чисто мнимое число можно, конечно, записать как полновесное комплексное число, если вы специально хотите такое сделать: 2i можно записать как 0 + 2i. При возведении чисто мнимого числа в квадрат получается отрицательное вещественное число. Заметим, что это верно и для отрицательных мнимых чисел: квадрат числа 2i равен −4, но и квадрат −2i тоже равен −4 по правилу знаков.

Сложение двух комплексных чисел — дело несложное. Надо просто складывать по отдельности вещественные части и отдельно мнимые части: сложение комплексных чисел −2 + 7i и 5 + 12i даст 3 + 19i. То же и с вычитанием: если в последнем примере вычитать, а не складывать, получим −7 − 5i. Что касается умножения, надо только помнить правило раскрытия скобок, не забывая при этом, что i2 = −1: так, (−2 + 7i)×(5 + 12i) дает −10 − 24i + 35i + 84i2, что сводится к −94 + 11i. В общем случае (a + bi)×(c + di) = (ac − bd) + (bc + ad)i.

Деление основано на нехитром приеме. Что такое 2:i?. Ответ: запишем это в виде дроби, как 2/i. Чудесное свойство дробей состоит в том, что одновременное умножение и числителя, и знаменателя на одно и то же число (не равное нулю) не изменяет дроби: 3/4, 6/8, 15/20 и 12 000/16 000 — это все разные способы записи одной и той же дроби. Итак, умножим числитель и знаменатель дроби 2/i на −i. Умножение двойки на −i даст, конечно, −2i, а i умножить на −i есть −i2, то есть −(−1), что равно 1. Следовательно, 2/i равно −2i/1, что есть просто −2i.

Такое всегда можно сделать — превратить знаменатель дроби в вещественное число. А поскольку всем известно, как делить на вещественные числа, мы у цели. Как нам поделить два полновесных комплексных числа, скажем, (−7 − 4i)/(−2 + 5i)? Вот как: умножим числитель и знаменатель на −2 − 5i. Давайте сначала выполним умножение сверху: (−7 − 4i)×(−2 − 5i) = −6 + 43i. Теперь снизу: (−2 + 5i)×(−2 − 5i) = 29. Ответ: −6/29 + 43/29i. Знаменатель дроби (a + bi)/(c + di) всегда можно превратить в вещественное число, умножив ее на (c − di). Общее правило на самом деле имеет вид

А каков квадратный корень из i? Не потребуется ли нам ввести целый новый класс чисел, чтобы включить √i? И все далее и далее до бесконечности? Ответ: перемножим скобки (1 + i)×(1 + i). Результат, как можно видеть, равен 2i. Значит, квадратный корень из 2i равен 1 + i. С поправкой на масштаб, квадратный корень из i должен быть равен 1/√2 + i/√2. Это число на самом деле им и является.

Комплексные числа по-настоящему прекрасны. С ними можно делать все, что угодно. Можно даже возводить их в комплексные степени, если вы полностью отдаете себе отчет в том, что делаете. Например, (−7 − 4i)−2+5i равно приблизительно −7611,976356 + 206,350419i. Однако подробное обсуждение этой темы мы отложим до другого момента.

V.

Чего нельзя сделать с комплексными числами, так это уложить их на прямую, как вещественные.