Группа Вейля компактной простой группы Ли класса Е6 изоморфна группе симметрий кубической поверхностив 3-мерном проективном пространстве с 27 прямолинейными образующими, уравнение которой можно привести к виду ace = bdf, где a, b, c, d, e, f - линейные полиномы, а группа Вейля компактной простой группы Ли класса Е7 изоморфна группе симметрий линии 4-го порядка на проективной плоскости, с 28 двойными касательными.
В работе опубликованной в Белграде в 2005 г. я доказал, что последняя группа Вейля изоморфна группе симметрий поверхностив 4-го порядка в 3-мерном проективном пространстве, уравнение которой можно привести к виду aceg = bdfh, где a, b, c, d, e, f, g, h - линейные полиномы, а группа Вейля компактной простой группы Ли класса Е8 изоморфна группе симметрий 2-мерной поверхности в 4-мерном проективном пространстве, уравнение которой можно привести к виду adg = beh = cfi, где a, b, c, d, e, f, g, h, i -линейные полиномы. Эта 2-мерная поверхность обладает 27 прямолинейными образуощими и 108 трисекантами, т.е. прямыми линиями пересекающими эту поверхность в тройках точек. Так как число 27 + 108 = 135 прямых, связанных с этой 2-мерной поверхностью, совпадает с числом прямых линий в 4-мерной плоскости 9-мерного эллиптического пространства, определенном выше, а группы симметрий этих двух конфигураций прямых линий изоморфны между собой, эти конфигурации также совпадают между собой.
Геометрия квазипростых и r-квазипростых групп Ли
Выше я упоминал о связи междо некомпактными простыми группами Ли и симметрическими пространствами с компактной простой группой движений. Эта связь, установленная Картаном в 1929 г., состоит в следующем: если s - инволютивный элемент компактной группы G движений, определяющий симметрическое пространство, то переход от элемента g группы G к элементу sgs является инволютивным автоморфизмом группы G. Этот автоморфизм порождает инволютивный автоморфизм в алгебре Ли А группы G. Этот автоморфизм алгебры Ли А определяет ее представление в виде прямой суммы двух подпространств A=B+C, где пространства B и C таковы, что при этом автоморфизме все векторы подпространства В инвариантны, а все векторы подпространства C умножаются на -1.
Если мы умножим все векторы подпространства C на мнимую единицу j, мы получим алгебру Ли А' некомпактной группы G', имеющей ту же комплексную форму, что и группа G. Алгорит перехода от группы G к группе G' я называю "Картановым алгоритмом". И.М.Гельфанд называет группы G и G' "двойственными по Картану".
Если мы умножим все векторы подпространства С не на мнимую единицу j, а на дуальную единицу e алгебры C0 дуальных чисел, мы получим алгебру Ли A0 новой группы Go, которую И.М.Гельфанд называет "тройственной по Картану" по отношению к группам G и G'.
Когда я читал в Утрехте лекцию об этих группах, Фрейденталь предложил называть эти группы "квазипростыми группами Ли." Поэтому я называю переход от группы G к группе G0 "квазикартановым алгоритмом".
Квазикартанов алгоритм может быть применен не только к компактным, но и к любым простым группам Ли. Его можно применять и несколько раз, и я называю группу Ли, полученную из простой группы Ли r-кратным применением квазикартанова алгоритма, "r-квазипростой группой Ли".
Понятие простоты, квазипростоты и r-квазипростоты имеют место и для алгебр. Ассоциативная алгебра называется простой, если она не содержит двусторонних идеалов. Как доказал Э.Картан, простыми ассоциативными алгебрами над полем R являются алгебры M(n), CM(n) и HM(n) вещественных, комплексных и кватернионных матриц n -го порядка. В частности, простыми алгебрами являются и сами алгебры C и H. Применяя Картанов алгоритм к алгебрам C и H мы получаем алгебры C' двойных чисел и H' псевдокватернионов. Применяя к этим алгебрам квазикартанов алгоритм, мы получим квазипростые алгебры C0 дуальных чисел и H0 полукватернионов.
Проста и альтернативная алгебра О октонионов. Применяя к ней Картанов алгоритм, мы получим простую альтернативную алгебру O' псевдооктонионов, а применяя к алгебре О квазикартанов алгоритм, мы получим квазипростую альтернативную алгебру O0 полуоктонионов.
Мое внимание к квазипростым алгебрам привлек И.М.Яглом еще в то время, когда я готовил докторскую диссертацию. Позднее он заинтересовал меня вырожденными неевклидовыми геометриями, группами движений которых являются квазипростые и r-квазипростые группы Ли.
Наиболее известными квазипростыми группами Ли являются группы движений евклидова и псевдоевклидовых пространств. Группа движений n- мерного вещественного евклидова пространства является тройственной по Картану по отношению к группам движений n-мерных вещественных эллиптического и гиперболического пространств. Группа движений n- мерного вещественного псевдоевклидова пространства индекса k является тройственной по Картану по отношению к группам движений n-мерных вещественных псевдоэллиптических пространств индексов k и k+1.