Коническим сечениям были посвящены не дошедшие до нас сочинение Аристея "О телесных геометрических местах" и "Начала конических сечений" Евклида, а таже несколько сочинений Архимеда. Архимед определил также "сфероиды" - эллипсоиды вращения, "тупоугольный коноид"- одну полость двуполостного гиперболоида вращения и "прямоугольный коноид" - параболоид вращения.
Аполлоний в "Конических сечениях", в отличие от его предшественников, рассматривал не только прямые, но и наклонные круговые конусы, и сечение этих конусов произвольными плоскостями, а также плоские сечения конических поверхностей, расположенных по обе стороны от вершины конуса. Так как при этом старые названия конических сечений теряют свой смысл, Аполлоний дал коническим сечениям новые названия "парабола", "эллипс" и "гипербола" вместо применявшихся Менехмом, Евклидом и Архимедом названий "сечение прямоугольного конуса", "сечение остроугольного конуса" и "сечение тупоугольного конуса". Аполлоний определил эти кривые как сечения поверхности одного и того же прямого или наклонного кругового конуса, расположенной по обе стороны от вершины конуса. Словом "гипербола" Аполлоний называл только одну ветвь гиперболы, а обе ветви гиперболы он называл "противоположными гиперболами".
Аполлоний нашел уравнения параболы, эллипса и гиперболы в виде y2=2px, y2=2px-(p/a)x2 и y2=2px+(p/a)x2 в системе координат, одной из осей которых является произвольный диаметр сечения, а другой - касательная к сечению в конце этого диаметра. Эта система координат в общем случае является косоугольной.
Названия Аполлония параболы, эллипса и гиперболы означают, соответственно, "приложение", "недостаток" и "избыток". Эти названия связаны с тем, что при построении точек параболы применяется приложение к отрезку 2р прямоугольника с высотой х равновеликого квадрату со стороной у, а при построении точек эллипса и гиперболы применяется "приложение с недостатком" и "приложение с избытком". Аполлоний называл отрезок 2р "прямой стороной" сечения, а отрезок 2а - "поперечной стороной" эллипса или гиперболы.
Аполлоний понимал, что аналогом эллипса является пара противоположных гипербол. Поперечная сторона эллипса или гиперболы равна отрезку оси абсцисс между ее точками пересечения с эллипсом или с двумя ветвями гиперболы. Если перенести ось ординат параллельно так, чтобы она проходила через центр эллипса или гиперболы, уравнения этих кривых примут вид x2/a2 + y2/b2 =1 и x2/a2 - y2/b2 =1, где b2 =ap.
Аполлоний рассматривал метрические свойства конических сечений - оси симметрии, фокусы и инверсии относительно окружности, эллипса, гиперболы и параболы; аффинные свойства - диаметры, центр, сопряженные диаметры, асимптоты и касательные; проективные свойства - полюсы и поляры, двойные отношения, гармонические четверки точек.
Термины "абсцисса" и "ордината" происходят от латинских переводов тех выражений, которыми Аполлоний называл эти отрезки.
Аполлоний называл осью наклонного кругового конуса прямую, соединяющую вершину А конуса с центром круга основания. Если конус пересечен плоскостью конического сечения и эта плоскость высекает из плоскости основания конуса прямую DE, Аполлоний опускал на эту прямую из центра основания перпендикуляр, пересекающий поверхность конуса в точках B и C. Треугольник ABC, проходящий через ось конуса и его вершину А, Аполлоний называл осевым треугольником. Плоскость конического сечения, высекает из поверхности конуса эллипс, параболу или две ветви гиперболы. Осью Оx служит линия пересечения секущей плоскости с плоскостью треугольника ABC, ось Oy параллельна прямой DE. В случае эллипса и гиперболы Аполлоний выражал отношение 2а/2p через углы треугольника ABC и угол между прямыми BC и Ох. В случае пораболы Аполлоний выражал отношение 2р/АО через углы треугольника ABC.
Пары точек гармонических четверок Аполлоний называл "имеющими то же самое отношение". В современной математике отношения отрезков, составляющих двойное отношение гармонической четверки точек отличаются знаком, но античные математики, не применявших отрицательных величин, считали эти отношеня равными.
Используя двойные отошения, Аполлоний по существу рассматривал проективные ряды точек прямых и проективные пучки прямых и пользовался тем фактом, что коническое сечение можно получить как геометрическое место точек пересечения соответственных прямых двух проективных пучков. Этот факт в явном виде сформулировал только Якоб Штейнер (1796-1863). Аполлоний пользовался также тем, что касательные к коническому сечению соединяют точки двух проективных прямых, связанные проективным соответствием между этими прямыми.