"Неевклидовы геометрии"
В Баку я закончил писать свою первую книгу. Начал писать ее я еще в Ашхабаде, писал ее, работая в военном учреждении, много работал над ней в Баку. С одним из предварительных вариантов я пришел в издательство физико-математической литературы, называвшееся тогда Государственным издательством технико-теоретической литературы (ГИТТЛ), тогда оно находилось еще в Орликовом переулке. Я показал книгу Д.А. Райкову, заведующему математической редакцией, он и предложил мне назвать книгу "Нееклидовы геометрии".
Дмитрий Абрамович Райков (1905-1981) был замечательный математик и редактор. Б.Н.Делоне рассказывал мне, что редактируя его курс аналитической геометрии, Райков сделал так много улучшений и вставок, что стал соавтором этой книги.
Я сдал мою рукопись в издательство, и через некоторое время получил ее с замечаниями рецензента. По стилю замечаний я узнал, что их писал Николай Владимирович Ефимов (1910-1982), прекрасный геометр, впоследствии член-корреспондент Академии наук СССР и декан Мехмата.
Я внес требуемые исправления и просил Ефимова быть редактором книги. Ефимов отказался, так как был сильно загружен.
Но в это время я получил письмо от Дмитрия Ивановича Перепелкина (1900-1954), который тогда заведовал кафедрой геометрии в Пединституте имени Ленина (МГПИ). Он узнал от И.М.Яглома о том, что я пишу книгу, и обратился ко мне с каким-то вопросом. Я попросил его быть редактором моей книги, и он согласился. Перепелкину моя книга очень понравилась, он написал положительный отзыв, и Г.Ф.Рыбкин, на которого я произвел хорошее впечатление в Казани, подписал со мной договор. Перепелкин написал мне огромное количество замечаний и советов, иногда даже предлагал другие, более простые, доказательства. Дмитрий Иванович в это время был тяжело болен и не дожил до выхода книги в 1955 г.
Важными ступенями на пути создания этой книги были моя докторская диссертация 1947 г., статья 1949 г. в сборнике статей Картана и статья 1952 г. в сборнике "125 лет геометрии Лобачевского".
Книга "Неевклидовы геометрии" состоит из 7 глав: 1)"Евклидовы пространства", 2)"Неевклидовы пространства как сферы с отождествленными диаметрально противоположными точками", 3)"Неевклидовы пространства как метризованные проективные пространства", 4)"Неевклидовы пространства как метризованные конформные пространства", 5)"Спинорные представления движений неевклидовых пространств", 6)"Неевклидовы пространства над алгебрами" 7)"Неевклидовы пространства как римановы пространства постоянной кривизны. Геометрия простых групп Ли как неевклидова геометрия".
В этой книге термин "евклидовы пространства" я применял и к евклидовым и к псевдоевклидовым пространствам, а термин "неевклидовы пространства" - к эллиптическим пространствам, в том числе к неевклидову пространству Римана и к гиперболическим пространствам, в том числе к неевклидову пространству Лобачевского, и к тем пространствам, которые я в статье 1949 г. называл псевдоэллиптическими.
В 1-й главе, кроме геометрии евклидоных и псевдоевклидовых простраств, кратко описаны важнейшие доказательства постулата параллельности Евклида. Во 2-й - 4-й главах изложены сферические, проективные и конформные интерпетации вещественных неевклидовых геометрий. В 5-й главе изложены алгебры комплексных чисел и кватернионов и их аналоги и интерпретации Картана и Джавадова спинорных представлений движений вещественных неевклидовых геометрий. В 6-й главе изложены эрмитовы неевклидовы геометрии над алгебрами комплексных чисел и кватернионов и над аналогами этих алгебр и интерпретации вещественных проективных и симплектических геометрий с помощью этих эрмитовых пространств. В этой же главе изложена теория Джавадова пространств над алгебрами матриц и их интерпретаций в вещественных пространствах. В 7-й главе изложены алгебра октонионов и интерпретации особых простых групп Ли классов F и Е в виде эрмитовых эллиптических плоскостей над алгебрами. В этой же главе книги были даны также определения римановых и псевдоримановых пространств и пространств аффинной связности. Здесь же было показано, что вещественные неевклидовы пространства являются римановыми и псевдоримановыми пространствами постоянной кривизны, определены обобщения пространств постоянной кривизны - симметрических римановых и псевдоримановых пространств и пространств аффинной связности и, в частности, инвариантных метрик и аффинных связностей в группах Ли, и указаны применения этих пространств к геометрии образов симметрии.