Выбрать главу

Аналогично, угол голоморфии и голоморфные и антиголоморфные двумерные площадки определяются в комплексных и кватернионных эрмитовых псевдоевклидовых пространствах.

Точки n-мерных комплексного и кватернионного эрмитовых эллиптических пространств можно представить прямыми линиями (n + 1)- мерных эрмитовых евлидовых пространств над полем С или телом Н, проходящими через одну точку, причем расстояние d между точками равно произведению угла между прямыми на число r, связанное с векторами а и b, направленными по прямым, представляющим эти точки соотношениями R2 = (a,a) = (b,b). Поэтому cos2(d/r) = (a,b)(b,a)/(a,a)(b,b). Отсюда следует, что комплексное и кватернионное эрмитовы эллиптические пространства можно определить как проективное пространство над полем С или телом Н, в котором задано расстояние d между точками А и В, представленными векторами а и b, по указанному равенству. Правая часть этого равенства равна двойному отношению точек А и В и точек пересечения полярных гиперплоскостей этих точек относительно эрмитовой гиперквадрики (x,x)=0 с прямой АВ.

Аналогично определяются комплексные и кватернионные эрмитовы гиперболическое, псевдоэллиптические и псевдогипербопические пространства, но точки этих пространств изображаются точками одной из двух областей, на которые эрмитова гиперквадрика (x,x)=0 делит проективное пространство.

Эрмитова гиперквадрика (x,x)=0, мнимая в случае эллиптических пространств, называется абсолютом пространства. В случае псевдоэллиптических пространств, указанное двойное отношение, как и в случае эллиптических пространств, равно cos2(d/r). В случае гиперболических и псевдогиперболических пространств это двойное отношение равно ch2(d/q), где q2 =(a,a) = (b,b).

Движениями эрмитовых неевклидовых пространств называются проективные преобразования этих пространств, переводящие в себя их абсолюты.

Числа 1/r2 и -1/q2 называются кривизнaми комплексных и кватернионных эрмитовых неевклидовых пространств.

Комплексные и кватернионные эрмитовы эллиптическое и гиперболическое пространства n измерений являются 2n-мерными и 4n- мерными римановыми пространствами, а n-мерные комплексные и кватернионные эрмитовы псевдоэллиптические и псевдогиперболические пространства индекса k изометричны 2n-мерным псевдоримановым пространствам индекса 2k и 4n-мерным псевдоримановым пространствам индекса 4k.

Прямые линии комплексного и кватернионного эрмитовых эллиптических пространств кривизны 1/r2 изометричны, соответственно, сфере радиуса r/2 в 3-мерном евклидовом пространстве и гиперсфере того же радиуса в 5-мерном евклидовом пространстве. Прямые линии остальных комплексных и кватернионных эрмитовых неевклидовых пространств также изометричны сферам 3-мерных пространств и гиперсферам 5-мерных пространств.

В комплексных и кватернионных эрмитовых эллиптических пространствах, так же, как в эрмитовых евклидовых пространствах, можно определить угол голоморфии j двумерной площадки и голоморфные и антиголоморфные двумерные площадки.

Секционная кривизна 2n-мерного и 4n-мерного римановых пространств изометричных n-мерным комплексному и кватернионному эрмитовым эллиптическим пространствам в 2-мерных направлениях равна K=(1+3cos j)/r2, где j - угол голоморфности 2-мерной площадки в этом направлении, К=1/r2 в антиголоморфных площадках и К=4/r2 в голоморфных площадках. Поэтому римановы пространства изометричные комплексным и кватернионным эрмитовым эллиптическим пространствам называются пространствами постоянной голоморфной секционной кривизны. В этих пространствах можно определить также формулы тригонометрии, которые связывают длины сторон a, b, c геодезических треугольников, их углы А, В, С и углы голоморфии в их вершинах.

Угол голоморфии, голоморфные и антиголоморфные площадки, выражение секционной кривизны в 2-мерном направлении через угол голоморфии и формулы тригонометрии можно определить и в других комплексных и кватернионных эрмитовых неевклидовых пространствах. Римановы и псевдоримановы пространства изометричные этим комплексным и кватернионным пространствам также называются пространствами постоянной голоморфной секционной кривизны.