Выбрать главу

Теперь мы видим объяснение нашего примера с возвращением в начало пути, приведенного выше, без термодинамики (где мы «попали в ловушку»).

Приведем еще аналогию возникновения этих разветвлений из обыденной жизни. Допустим, мы путешествуем по некоторой местности. Идем по тропинке, и нам встречается развилка. И нет информации – куда свернуть? Пошли наугад, направо. Идем дальше, встречается перекресток, опять та же проблема, какую дорогу выбрать? И если это «путешествие» продолжить, то неопределенность нашего местонахождения возрастает. Особенно часто такая ситуация возникает, когда теряются дети. В какую сторону ребенок мог пойти?!

Достаточно принять эту аксиому, то далее, известная формула Клода Шеннона для информационной энтропии может быть выведена строго математически (см. приложение).

Формула Шеннона:

где S – энтропия, – вероятности возможных состояний системы i=1, 2… N) в каждый момент времени,

k и a – произвольные постоянные.

В теории информации k=1; a=2.

Но вернемся в термодинамику. Нет ли там такой же формулы? Случайных, необратимых явлений там сколько угодно. Да и сама термодинамическая система состоит из множества хаотически (случайно) движущихся частиц. В термодинамике эта формула аналогична, но k – постоянная Больцмана, a – основание натуральных логарифмов. Людвиг Больцман вывел формулу для термодинамической энтропии раньше К. Шеннона (на 60 лет), но последний, получил ее заново и для более общего случая. Это подтверждает универсальный характер понятия энтропии. Нет принципиальной разницы между информационной и термодинамической энтропией.

Но при выводе формулы Больцмана использовалось понятие изолированной термодинамической системы, а при выводе формулы Шеннона такого ограничения не накладывалось. Это несоответствие кажущееся и связано с тем, что термодинамика исторически всегда была связана с системами ограниченными по массе и объему. Это позволяло делать конкретные выводы и практические расчеты. «Анализ процессов, происходящих в изолированной системе, представляет интерес в большой мере потому, что в пределе любую изолированную систему и окружающую среду можно мысленно рассматривать как единую изолированную систему» [10]. Поэтому не приходится сомневаться в том, что необратимость присутствует не только в термодинамических системах, а и во всех других, где применима приведенная выше аксиома о точках бифуркации.

Опыт показывает, что многие люди не знают точного определения понятия «вероятность». Для них в приложении приведен простой пример расчета энтропии по приведенной выше формуле. Вероятность меняется от нуля до единицы (достоверное событие). В обиходе иногда принимают вероятность от нуля до ста процентов.

Вывод этой формулы сделан при учете только самых простых и общих предпосылок (рис. 1). При этом не вводились никакие энергетические ограничения. Поэтому из этой формулы следует, что энтропия всегда растет, в любых материальных системах. Причем расчет по этой формуле показывает, что скорость возрастания энтропии тем выше, чем ближе друг к другу вероятности перехода из точки бифуркации в возможные состояния. Например, – при P1 = P2 на рисунке 1.

В соответствии с этой формулой энтропия никогда не может самопроизвольно снижаться.

Взглянем ещё раз на формулу Шеннона. В каких единицах измеряется энтропия? Вероятности P безразмерны, значит, размерность энтропии равна размерности произвольной постоянной k, которая по своей сути может быть любой. Принято принимать размерность этой величины, исходя из сущности рассматриваемой системы. В теории информации она имеет размерность в битах, в термодинамике, – в Дж/(кг·К). В любой другой системе необходимо описать два близких во времени состояния и вычислить вероятность второго по отношению к первому. Или определить её опытным путем. Тогда безразмерная часть формулы Шеннона будет определена. А размерность энтропии будет равна размерности сделанных описаний изучаемой системы. Если они имеют физический смысл, то и размерность будет иметь физическую природу. Если же в описании нет физического смысла, например, описание в виде текста из букв, то размерность энтропии совпадает с размерностью информации (бит).