Выбрать главу

Можно увидеть на территории института и теплицы-опреснители с замкнутым циклом использования воды. И новый одноэтажный дом, где отрабатываются системы солнечного отопления. И самые разные концентраторы солнечной энергии. Но есть такие объекты гелиотехнических исследований, которыми институт не занимается. Точнее, просто не может заниматься. Эти объекты находятся в сфере интересов ведущих исследовательских организаций страны, работающих в разных областях физики, химии, биологии, энергетики и тоже разрабатывающих некоторые фундаментальные проблемы, связанные с использованием энергии белого Солнца пустыни.

В числе исследований, которые могут в итоге превратить среднеазиатские пустыни в ценнейшие энергетические плантации, можно назвать работы в области водородной энергетики. Живая природа чрезвычайно бережно и экономно использует солнечную энергию. В растениях мельчайшие порции солнечного излучения утилизируются для точно отлаженных химических превращений. Специалисты подумывают о том, чтобы и в технических устройствах использовать солнечный свет для получения определенных химических соединений, которые потом могли бы играть роль искусственного горючего. В качестве возможного кандидата называют один из окислов серы, который может образовываться из исходных продуктов — серы и кислорода — под действием солнечных излучений. Получившийся газ в дальнейшем легко соединяется с кислородом воздуха, то есть сгорает, выделяя более 5000 килоджоулей энергии на каждый кубометр. Это немало, хотя и в несколько раз меньше, чем теплотворная способность природного газа.

Другой возможный кандидат на роль синтетического топлива, полученного с помощью Солнца, водород. В последнее время он вообще стал объектом пристального внимания энергетиков. Многие из них полагают, что водород в будущем заменит углеводородное топливо, в частности нефть и уголь. В этом случае водород будут доставлять потребителям по трубам, как сейчас по проводам доставляют электрический ток. В числе достоинств водорода его рекордная калорийность: килограмм водорода при сгорании выделяет в несколько раз больше тепла, чем килограмм бензина. К тому же горение водорода не загрязняет окружающую среду: из выхлопной трубы автомобиля с водородным двигателем вылетает только обычная вода.

Среди многих проблем, стоящих на пути водородной энергетики, — получение самого водорода. Пока он обходится недешево и конкурировать с нефтью никак не может. И вот здесь, оказывается, помощь может прийти из пустыни. Один из самых известных способов получения водорода — электролиз воды. И в принципе можно найти такой режим процесса, который можно вести с помощью электричества, выработанного на солнечных электростанциях. Есть и другой перспективный процесс — фотолиз. В этом случае водород получают за счет расщепления молекул воды непосредственно солнечным излучением. К сожалению, прямой фотолиз в условиях Земли невозможен. Необходимое для него ультрафиолетовое излучение, на долю которого приходится чуть ли не половина всей энергии солнечных лучей, до Земли почти не доходит, поглощаясь в атмосфере. Но возможно получение водорода путем фотолиза с использованием некоторых промежуточных химических процессов, и этот путь энергично обсуждается специалистами.

Есть и вторая возможность создать в пустынях мощные энергетические базы. Это постройка больших фотоэлектрических электростанций, где бесшумно работают тихие и скромные полупроводниковые фотоэлементы. Мы уже говорили, что пока даже лучшие из них, кремниевые фотоэлементы, имеют слишком малый коэффициент полезного действия и стоят слишком дорого. Но несмотря на это в широкой печати уже обсуждаются проекты космических электростанций, на которых огромные панели солнечных батарей будут вырабатывать большие количества электроэнергии. Преобразованная в радиоволны или в свет, эта энергия по мощному радиолучу или по лучу лазера будет передаваться из космоса на Землю. Прогнозы, связанные с использованием таких космических фабрик электричества, относятся уже к следующему веку. И все они исходят из того, что к моменту, когда появится возможность строить такие огромные космические сооружения, будет решена и проблема полупроводниковых фотоэлементов. Они к тому времени, возможно, будут эффективными и дешевыми.