Положение корабля может быть определено по одновременной фотографии двух каких-нибудь планет на фоне звезд. Можно определить и угол между двумя планетами. Если приборы, которыми пользуется штурман корабля, позволяют определять величину угла с точностью в одну угловую секунду, а его часы измеряют время с точностью в одну сотую секунды, то ошибка в определении положения корабля, путешествующего внутри орбиты Марса, не превзойдет 1600 километров. Это, конечно, очень высокая точность, вполне достаточная для целей космической навигации.
Одним из возможных и перспективных методов определения положения корабля в пространстве является использование радиоизлучения небесных тел. Радиоастрономия уже открыла много различных космических радиоизлучателей, и число их все время возрастает. Ряд подобных излучателей обладает такими особенностями излучения, что их нельзя перепутать с какими-нибудь другими. Это и позволяет определять положение корабля по местонахождению таких «ориентирных» космических радиоизлучателей. В будущем для облегчения ориентировки в космосе могут быть составлены специальные «радиокарты» мирового пространства, которые сослужат большую службу штурманам космических кораблей.
Но, как ни важно определение положения корабля в пространстве, неизмеримо более важным для штурмана является определение направления его движения и скорости в данный момент. Ведь именно это позволяет судить об отклонениях от заданного маршрута и графика полета и принимать решение о необходимых коррективах.
К сожалению, все ориентиры в мировом пространстве расположены на таком большом расстоянии, что пользоваться ими для определения величины и направления скорости, как это мы делаем, например, на Земле, оказывается очень не просто, в особенности если требуется достичь хорошей точности. Проще всего, пожалуй, пользоваться для этого уже известными приемами определения координат корабля. Ведь установив изменение координат за определенное время, например за сутки (малые промежутки времени здесь не годятся), можно определить и все, что относится к движению корабля, — его скорость, направление и т. д.
Так, например, можно фотографировать изображение Солнца, допустим, через каждые несколько часов на одну и ту же пленку. Если корабль движется в плоскости эклиптики, то все эти изображения будут расположены по одной прямой. Через определенное время, например 10 или 20 часов, можно сравнить размеры изображений Солнца в начале и конце этого промежутка времени и установить смещение изображения за это же время. Изменение величины изображения позволит судить об изменении расстояния от Солнца, а смещение изображения — об изменении долготы корабля (для определения траектории корабля необходимо не менее трех последовательных снимков). Можно вместо фотографирования измерять количество тепла или света, излучаемого Солнцем и поглощенного прибором на корабле за определенное время. Можно, наконец, воспользоваться для этой цели и движением планет.
Но неужели нет возможности измерить скорость движения корабля непосредственно в данный момент, а не ее среднее значение за довольно большое время?
Такая возможность имеется. Метод, о котором идет речь, уже не раз с успехом использовался наукой для определения скорости движения. В частности, астрономы с помощью этого метода установили, что многие звездные системы — галактики — удаляются от нас и определили скорость их «разбегания». Для этого они воспользовались так называемым эффектом Допплера.
Многие из читателей, наверное, наблюдали, как меняется тон паровозного гудка, когда мимо проносится на большой скорости железнодорожный поезд. Как только поезд промчится мимо станционной платформы и уже не приближается, а удаляется от вас, вы слышите гудок более низкого тона, басовитый. То же произойдет, если гудящий паровоз будет стоять неподвижно, а проноситься мимо него будете вы на проходящем поезде. Частота воспринимаемого звука меняется в зависимости от того, как направлена относительная скорость источника звука и наблюдателя. Если источник звука и наблюдатель сближаются, частота повышается, если удаляются — частота понижается. Это же явление наблюдается и в случае распространения электромагнитных волн — таковы общие свойства волнообразного движения. Например, если источник света удаляется от наблюдателя, то он кажется ему более «красным», то есть спектр излучаемого этим источником света как бы смещается в сторону более длинных волн — красных. Именно таким образом и было установлено упомянутое выше «разбегание» галактик.