Выбрать главу

После образования легких элементов содержимое Вселенной претерпевает значительные перемены. Это пополнение запасов реестра частиц — второе такое событие за первые несколько минут существования времени. Излучение продолжает господствовать во Вселенной, будучи основной ее составляющей. А расширение продолжается.

Инфляция

Как мы уже отмечали, в самые первые мгновения истории космоса Вселенная вступила в короткую, но напряженную фазу невероятно быстрого расширения. По окончании этого периода расширения, происходившего со скоростями, превышающими скорость света, размер Вселенной увеличился в огромное число раз: возможно, в миллион триллионов триллионов (1030). По завершении этой, хотя и короткой, но изменившей Вселенную, эпохи космос немного успокоился, перейдя в состояние более монотонного расширения. Как и почему произошла эта инфляция?

Расширение Вселенной, распространенность легких элементов и существование поля космического фонового излучения объясняет традиционная теория Большого взрыва. Эта теория обладает еще одним преимуществом: она очень проста и изящна математически. Однако в своем первоначальном виде теория Большого взрыва не дает полного объяснения Вселенной. К счастью, многие из оставшихся свойств нашей Вселенной, а именно: ее большой размер, ее плоскостность и крайнюю однородность, — можно объяснить с помощью всего одной модификации. Эту дополнительную теорию, носящую название теории инфляции, выдвинул Алан Гус, который сейчас работает профессором в МТИ. Его плодотворный труд — The Inflationary Universe («Инфляционная Вселенная») — произвел переворот в космологических исследованиях.

Процесс инфляции легко объясняет, почему наша Вселенная такая большая и такая однородная. Инфляция также приводит геометрию пространства-времени к той степени плоскостности, которую мы наблюдаем сегодня в космосе. Основная идея инфляции проста: в очень ранний момент своей истории размер Вселенной внезапно увеличился в огромное число раз. Чтобы эволюционировать во Вселенную, напоминающую нашу собственную, со свойствами, которые мы наблюдаем сегодня, первичная Вселенная должна была увеличиться, как минимум, в 1028 раз. Чтобы хоть как-то представить себе всю необъятность этого числа, вспомните, что размер современной видимой Вселенной составляет около 1028 сантиметров. Так что инфляция подобна раздуванию одной гальки до размеров всей нашей видимой Вселенной, или даже больше, за крошечную долю секунды. Такое крайне быстрое расширение происходит, если в общей плотности энергии Вселенной доминирует плотность энергии вакуума. Этот достаточно таинственный тип энергии обладает любопытным свойством отрицательного давления. Если в общей энергии Вселенной доминирует энергия вакуума, отрицательное давление будет стимулировать постоянное увеличение скорости расширения. Это ускоряющееся расширение может раздуть Вселенную в огромное количество раз, которое необходимо, чтобы объяснить ее свойства.

На первый взгляд, концепция плотности энергии вакуума выглядит как терминологическое противоречие. Мы привыкли считать, что вакуум — это абсолютная пустота. Как же может нечто, будто бы пустое, вообще иметь энергию, не говоря уже о преобладании плотности этой энергии над всей остальной энергией Вселенной? На фундаментальном уровне вакуум должен подчиняться квантово-механическому описанию, а это означает, что на самом деле вакуум совсем не пуст. Вакуумом правит принцип неопределенности Гейзенберга, который назван в честь Вернера Гейзенберга, пионера квантовой механики. Эта фундаментальная концепция квантовой механики возникает из-за волновой природы физической реальности на малых расстояниях и приводит к возможности существования энергии вакуума.

Рассмотрим, например, электрон. Принцип неопределенности Гейзенберга гласит, что невозможно одновременно измерить как импульс частицы, так и ее положение с произвольно высокой степенью точности. Поскольку нельзя точно измерить одновременно импульс и положение, неопределенности в значениях этих величин невозможно свести к минимуму в одно и то же время. Другими словами, сумма неопределенностей должна превышать некоторое число, обыкновенно обозначаемое h. Величина h — это фундаментальная постоянная природы, называемая постоянной Планка. Аналогичный закон гласит, что невозможно одновременно свести к минимуму неопределенность в измерении энергии и неопределенность в измерении времени. Из этого принципа неопределенности следует одна важная вещь: в природе закон сохранения энергии может нарушаться при условии, что сей криминальный акт несохранения происходит в течение достаточно короткого времени.