Нейтронные звезды
Несмотря на невероятно высокую плотность белых карликов, нейтронная звезда является еще более плотной формой звездного вещества. Типичная плотность белого карлика превышает плотность воды «всего лишь» в миллион раз. Однако ядра атомов гораздо плотнее — примерно в квадрильон (1015) раз плотнее воды, или в миллиард раз плотнее белого карлика. Если звезду сжать до невероятно высокой плотности атомного ядра, звездное вещество может достигнуть экзотической, но стабильной конфигурации. При этих высоких значениях плотности электроны и протоны предпочитают существовать в форме нейтронов, так что, по существу, все вещество пребывает в форме нейтронов. Эти нейтроны вырождаются, и давление, создаваемое ими, опять-таки в силу действия принципа неопределенности, сдерживает звезду от гравитационного коллапса. Нейтронная звезда, которая образуется В результате весьма напоминает отдельное атомное ядро гигантских размеров.
Непостижимо высокие плотности, необходимые для образования нейтронной звезды, естественным образом достигаются во время коллапса, который массивная звезда переживает в конце своей жизни. Центральная область звезды, дошедшей до поздней стадии эволюции, превращается в вырожденное железное ядро, которое в ходе гравитационного коллапса сжимается, инициируя вспышку сверхновой, после которой зачастую остается нейтронная звезда. Кроме того, нейтронные звезды могут образоваться в результате коллапса белых карликов. Если белый карлик медленно увеличивает свою массу, приобретая ее от звезды-спутника, ему иногда удается избежать гибели во вспышке сверхновой и сжаться, превратившись в нейтронную звезду.
По сравнению с белыми и коричневыми карликами нейтронные звезды встречаются относительно редко. Ведь они могут образоваться лишь в результате гибели звезд, масса которых при рождении более чем в восемь раз превышает массу Солнца. Эти массивные звезды представляют собой лишь высокомассовый «хвост» распределения звездных масс. Подавляющее большинство звезд слишком малы. Лишь каждая четырехсотая звезда рождается достаточно большой, чтобы взорваться и оставить после себя нейтронную звезду. Но даже несмотря на столь малые шансы, достаточно большая галактика будет содержать миллионы нейтронных звезд.
Масса типичной нейтронной звезды примерно в полтора раза превышает массу Солнца. Так же, как в случае с белыми карликами, которые существуют благодаря давлению вырожденного электронного газа, давление вырожденных нейтронов не способно поддерживать остаток звезды произвольно большой массы. Если масса становится слишком большой, гравитация побеждает давление вырожденного газа и звезда сжимается. Максимально возможная масса нейтронной звезды лежит в промежутке между двумя и тремя массами Солнца, однако точное ее значение нам не известно. При непостижимо высоких плотностях, которых достигает вещество в центре нейтронной звезды, оно приобретает весьма экзотические и несколько неопределенные свойства. Несмотря на то, что нейтронные звезды тяжелее Солнца, их радиус достаточно мал: всего десять километров. Маленький размер вкупе с большой массой говорит о невероятной плотности вещества. Кубический сантиметр вещества (размером с кусочек сахара), из которого состоит нейтронная звезда, весит почти столько же, сколько миллиард слонов!
Черные дыры
Четвертым возможным вариантом гибели звезды является ее превращение в черную дыру. После взрыва и угасания самых массивных звезд может остаться объект, масса которого превышает допустимый максимум для нейтронной звезды (значение, находящееся между двумя и тремя массами Солнца). Достаточно массивный звездный остаток не может существовать за счет давления вырожденного газа и должен коллапсировать, превратившись в черную дыру. Аналогичным образом, полностью сформировавшиеся белые карлики и нейтронные звезды могут приобрести дополнительную массу, как правило от сопутствующих им звезд, и стать слишком большими, чтобы существовать за счет давления вырожденного газа. Слишком тяжелые остатки, которые появляются в результате этого, также должны коллапсировать и иногда могут образовать черные дыры.