Черные дыры разбросаны по невероятно разреженному морю элементарных частиц. Представьте себе просеивание через большие объемы этого почти идеального вакуума. Время от времени попадается электрон — отрицательно заряженная частица, вращающаяся по орбите вокруг ядра современных атомов и текущая по проводам электрической цепи. В результате длительных поисков было обнаружено, что каждому сохранившемуся электрону соответствует антиматериальный партнер — позитрон. Каждый позитрон несет единичный положительный заряд, так что Вселенная в целом остается электрически нейтральной. В результате дальнейших поисков обнаруживаются невидимые обитатели межзвездных пустот: аксионы, различные ароматы нейтрино и т. п.
Вселенная в эпоху черных дыр погружена в море низкоэнергетических фотонов — света, длины волн которого слишком велики, чтобы их мог различить глаз человека. Свет, улавливаемый нашими глазами, состоит из фотонов, длины волн которых составляют около половины микрона (половина одной тысячной миллиметра). Длина волны типичного излучения в сороковую космологическую декаду гораздо больше — почти километр. Чтобы иметь способность «видеть» в эпоху черных дыр, нужно иметь глаза размером с материки.
Определение черных дыр
Что такое черная дыра? Традиционное определение могло бы звучать так: черная дыра — это объект, искажающий пространственно-временной континуум настолько сильно, что даже свет не может покинуть поверхность этого объекта. В этой главе мы исследуем смысл данного определения подробно, хотя основную идею, лежащую в основе феноменальной гравитации черной дыры, понять совсем несложно.
Наверное, трудно найти человека, который не видел бы зернистые кадры высадки экипажа «Аполлона» на поверхность Луны. Астронавты легко прыгают в объемных космических скафандрах. В их прыжках на прямых ногах проявляется одно загадочное качество, которое легко объяснимо: сила притяжения на Луне в шесть раз меньше земной. Мяч, брошенный вверх с заданной скоростью, поднимется над поверхностью Луны выше, чем над поверхностью Земли. Аналогично, чтобы вырваться из гравитационных объятий Луны, потребуется меньшая энергия.
Скорость, которую нужно развить, чтобы преодолеть гравитационное притяжение некоторого тела, называют второй космической скоростью. Например, чтобы оторваться от поверхности Земли (в отсутствие трения воздуха), нужно развить скорость, равную 25 000 миль в час (11 километров в секунду). Огромные ракеты-носители «Сатурн V» обеспечили эту необходимую скорость, для того чтобы попасть на Луну. Вместе с тем, чтобы покинуть Луну и вернуться на Землю, оказалось достаточно сравнительно скромных ракет на лунных модулях. Вторая космическая скорость для Луны невелика, потому что Луна имеет меньшую плотность и меньшую массу, чем Земля. Если два объекта имеют одинаковый размер, но разные массы, вторая космическая скорость будет больше для более тяжелого объекта. Например, если представить объект, имеющий массу Солнца и диаметр Земли, вторая космическая скорость для этого плотного видоизмененного мира составила бы 6 500 километров в секунду — в 588 раз больше второй космической скорости для Земли. Если увеличивать массу, сохраняя неизменным диаметр, увеличивается и вторая космическая скорость, в силу чего оторваться от поверхности становится гораздо сложнее. В конце концов, после того как в сферу размером с Землю будет втиснуто две тысячи солнечных масс, вторая космическая скорость превысит скорость света (300000 километров в секунду). Если вторая космическая скорость превышает скорость света, то ничто, даже сам свет, не может оторваться от такой поверхности. Наша гипотетическая плотная сфера становится черной дырой. И название это исключительно уместно: объект, не излучающий света, кажется внешней Вселенной абсолютно черным.
Несмотря на то, что ничто не движется настолько быстро, чтобы покинуть поверхность черной дыры, черная дыра не есть космическая утроба, которой суждено поглощать все, что находится рядом. Гравитационное притяжение любого объекта, и черные дыры здесь не исключение, ослабевает по мере удаления от этого объекта. На достаточном расстоянии притяжение черной дыры неотличимо от притяжения обычной звезды сравнимой массы. Вдалеке от черной дыры локальная вторая космическая скорость всегда меньше скорости света, поэтому частицы или космические корабли могут свободно прилетать и улетать. По мере приближения к черной дыре вторая космическая скорость неуклонно растет. На расстоянии четко определенного радиуса вторая космическая скорость, наконец, превышает скорость света. Эта точка невозвращения отмечает место положения фактической поверхности черной дыры и называется радиусом Шварцшильда, в честь немецкого физика Карла Шварцшильда, который одним из первых принял общую теорию относительности Эйнштейна. Вскоре после выведения радиуса, который сейчас носит его имя, Шварцшильд скончался от болезни, которой заразился на русском фронте во время Первой мировой войны.