345. Прежде всего проведите разрез AB. Затем сложите полученные три части вместе так, чтобы при следующем взмахе ножниц вы могли провести одновременно разрезы CD, EF и GH (см. рисунок справа).
346. Восемь кусков фанеры можно расположить симметрично, чтобы они образовали квадрат таким образом, как показано на рисунке.
347. Сложите два квадрата вместе таким образом, чтобы линии AB и CD были прямыми. Затем найдите центр большего квадрата и проведите через него прямую EF, параллельную AD. Если вы теперь проведете через тот же центр перпендикулярно EF прямую GH, то больший квадрат разобьется на 4 части, из которых вместе с меньшим квадратом можно будет составить новый квадрат.
[Это решение было впервые найдено английским математиком-любителем Генри Перигейлом, который опубликовал его в 1873 г. Оно представляет собой одно из лучших доказательств теоремы Пифагора с помощью разрезания. См. гл. 38 книги М. Гарднера «Математические головоломки и развлечения» (М., изд-во «Мир», 1971). — М. Г.].
348. На рисунке показано, как можно разрезать фанеру. Квадраты A и B вырезаются целиком (1), а из четырех частей C, D, E и F можно составить третий квадрат (2).
[Существуют решения данной задачи, в которых участвует только пять частей. Не сможет ли читатель отыскать решение из пяти частей, при котором общая длина разрезов составляет 16 единиц? — М. Г.]
349. Вырежьте кусок A и, повернув его на четверть оборота по часовой стрелке, соедините с куском B. При этом получится правильная шахматная доска.
350. На рисунке показано, как составить квадрат из 20 кусочков.
351. Если ковер разрезать на две части, как показано в случае 1, и сшить куски вместе таким образом, как изображено в случае 2, то получится квадрат. Ширина ступеньки равна 2, а высота 1 м.
352. Согнув листок по серединам противоположных сторон, получим прямые AOB и COD. Произведем также сгибы EH и FG, делящие AO и OB пополам. Перевернем AK так, чтобы K попала на прямую EH в точке E, а затем произведем сгибы через AE и EOG. Аналогично найдем точку H и согнем бумагу вдоль AH и HOF. Произведя сгибы BF, BG, EF и HG, получим искомый правильный шестиугольник EFBGHAE.
353. Сложив AB вдвое, найдите середину E. Согните бумагу вдоль EC. Совместите EB с EC и согните так, чтобы получить EF и FG. Сделайте так, чтобы отрезок CH стал равным отрезку CG. Найдите K — середину отрезка BH и отложите отрезок CL, равный BK. Отрезок KL — сторона правильного пятиугольника. Затем отложите (см. правую часть рисунка) отрезки KM и LN, равные KL, так, чтобы M и N соответственно лежали на BA и CD. Согнув бумагу вдоль PQ, отложите MO и NO, равные KM и LN. Многоугольник KMONL и есть искомый пятиугольник.
354. Соединив между собой края AB и CD, вы можете отметить сгибами средние точки E и G. Аналогичным образом вы можете найти точки F и H, а затем согнуть квадрат EHGF. Далее совместите CH с EH и EC с EH, при этом вы получите точку пересечения 1. Сделайте то же самое с оставшимися тремя углами — сгибы очертят правильный восьмиугольник, который затем можно будет вырезать с помощью ножниц.
355. Сложите квадрат пополам вдоль FE. Загните сторону AB так, чтобы точка B легла на FE, и вы получите точки G и H, через которые можно провести сгиб HGJ. Оставляя точки B и G по-прежнему совмещенными, отогните AB назад на AH, и вы получите прямую AK. Теперь вы можете сложить треугольник AJK — наибольший равносторонний треугольник из всех возможных.