Выбрать главу

379. Хотя требовалось, чтобы цифры в каждой клетке были различными, это вовсе не значило, что различными должны быть числа. В меньшем квадрате каждая из сумм чисел на десяти прямых равна 15, поскольку в дополнение к строкам, столбцам и большим диагоналям две малые диагонали тоже дают сумму 15. Это максимально возможное число прямых. Нам осталось лишь выразить каждое число с помощью своей в каждом случае повторяющейся цифры, используя знаки арифметических действий. На большем квадрате показано, как это можно сделать. Все условия головоломки будут, таким образом, удовлетворены с максимальным числом направлений, равным десяти.

[Клеточки с 4, 8 и 7 излишне сложны. Возможно более простое решение:

380. Объяснение содержится в самом решении (см. рисунок). Суммы чисел, стоящих в строках, столбцах и на двух диагоналях, равны 6726, а каждая из цифр 1, 2, 3, 4 использована ровно девять раз.

381. Начав с правого верхнего угла, а затем двигаясь вниз «вокруг квадрата», заполните клетки числами в следующем порядке: 13, 81, 78, 6, 75, 8, 15, 16, 77, 70, 19, 79, 21, 9, 23, 2, 69, 66, 67, 74, 7, 76, 4, 1, 5, 80, 59, 73, 61, 3, 63, 12. Очевидно, противоположные числа на границе должны в любом случае давать в сумме 82, но их правильного расположения добиться не так-то легко. Разумеется, существуют и другие решения.

382. На рисунке приведено одно решение с нечетными и четными числами.

383. Назовем ABCDE «пятиугольником», a F, G, H, J, K «вершинами» (I). Запишем в пятиугольнике числа 1, 2, 3, 4, 5, как показано на рисунке II (мы начинаем с 1 и движемся по часовой стрелке, перескакивая каждый раз через один кружок). Чтобы заполнить звезду с суммой 24, воспользуйтесь следующим простым правилом. Найти H можно, вычитая сумму B и C из половины данной постоянной (24) и прибавляя E. Другими словами, надо 6 вычесть из 15, при этом получится искомое значение H, равное 9. Затем можно вписать в кружок F число 10 (чтобы сумма оказалась равной 24), вписать 6 в J, 12 в G и 8 в K. Решение получено.

Вы можете вписать в пятиугольник любые 6 чисел в любом порядке и с произвольной постоянной суммирования. В каждом случае вы получите с помощью указанного правила единственно возможное решение для данных пятиугольника и постоянной. Однако в этом решении могут встретиться повторяющиеся или даже отрицательные числа. Допустим, например, что я задал пятиугольник 1, 3, 11, 7, 4 и постоянную 26 (см. рисунок III). Тогда видно, что 3 повторяется, а добавочное число 4 отрицательно и практически его приходится вычитать, а не прибавлять. Вы можете также заметить, что если бы в случае II мы заполнили пятиугольник теми же числами, но в другом порядке, то получили бы при этом повторяющиеся числа.

Ограничимся случаем десяти различных положительных целых чисел. Тогда 24 будет наименьшей возможной постоянной. Решение с любой большей постоянной можно получить из данного. Так, если мы хотим взять постоянную, равную 26, то достаточно добавить в вершины по 1. Если мы хотим взять постоянную 28, то в каждую вершину следует добавить по 2 или по 1 во все кружки. Для нечетных постоянных решений не существует, если мы не допускаем дроби. Каждое решение можно «вывернуть наизнанку». Так, рисунок IV — модификация рисунка II. Аналогично четыре числа в G, K, D, J можно всегда изменить, если нет повторений, например вместо чисел 12, 8, 5, 6 на рисунке II подставить числа 13, 7, 6, 5. Наконец, в любом решении постоянная равна ⅖ суммы всех десяти чисел. Поэтому если задано множество чисел, то мы можем определить постоянную, а по заданной постоянной найти сумму всех нужных чисел.

384. За недостатком места я не смогу здесь привести полное решение этой интересной задачи, но укажу читателю основные моменты.

1. При любом решении сумма чисел в треугольнике ABC (см. рисунок I) должна совпадать с суммой чисел в треугольнике DEF. Эта сумма может равняться любому числу от 12 до 27 включительно, кроме 14 и 25. Нам нужно получить решения лишь для случаев 12, 13, 15, 16, 17, 18 и 19, поскольку дополнительные решения 27, 26, 24, 23, 22, 21 и 20 можно получить из них, заменяя каждое число на разность между ним и 13.

2. Каждое решение составлено из трех независимых ромбов AGHF, DKBL и EMCI, сумма чисел в каждом из которых должна равняться 26.